

Project funded by the European Union’s Horizon 2020 Research and Innovation Programme (2014 – 2020)

OpenBudgets.eu: Fighting Corruption with Fiscal Transparency

Deliverable 1.9

Linking code lists to external datasets

Dissemination Level Public

Due Date of Deliverable Month 10, 29.2.2016

Actual Submission Date 22.03.2016

Work Package
WP 1, Data Structure Definition for
Budgets and Public Spending

Task T 1.3

Type Demonstrator

Approval Status Final

Version 1.0

Number of Pages 17

Filename
D1.9 Linking code lists to external
datasets.docx

Abstract: This deliverable demonstrates how code lists used in budget and spending
data can be linked to third-party datasets. The main outcome of this effort comprises the
produced sets of links along with the linkage rules used to generate the links. The
accompanying text expounds the motivation of linking and describes the automatic
approaches used for linking the considered code lists. Most of the links were produced
via SPARQL 1.1 Update operations using exact matches on codes of code list concepts.
We also experimented with the Silk link discovery framework, various approaches to data
pre-processing, and automated translation. Additionally, we link several code lists
manually and reuse existing links for others. Quality of links generated via automatic fuzzy
heuristics is manually evaluated by domain experts using a sample of links.

The information in this document reflects only the author’s views and the European Community is not liable for any use
that may be made of the information contained therein. The information in this document is provided “as is” without
guarantee or warranty of any kind, express or implied, including but not limited to the fitness of the information for a

particular purpose. The user thereof uses the information at his/ her sole risk and liability.

Project Number: 645833 Start Date of Project: 01.05.2015 Duration: 30 months

 D1.9 – v.1.0

Page 2

History

Version Date Reason Revised by

0.1 04.03.2016 Version for internal review Jindřich Mynarz

0.2 21.03.2016 Version for external review Nicolas Kayser-Bril

1.0 22.03.2016 Final version for submission Jakub Klímek

Author List

Organisation Name Contact Information

OKGR Lazaros Ioannidis larjohn@gmail.com

UEP Jakub Klímek klimek@opendata.cz

IAIS Fathoni Musyaffa fathoni.am@gmail.com

UEP Jindřich Mynarz mynarzjindrich@gmail.com

UEP Lucie Sedmihradská sedmih@vse.cz

UEP Jaroslav Zbranek zbranek.jaroslav@gmail.com

mailto:larjohn@gmail.com
mailto:klimek@opendata.cz
mailto:fathoni.am@gmail.com
mailto:mynarzjindrich@gmail.com
mailto:sedmih@vse.cz
mailto:zbranek.jaroslav@gmail.com

 D1.9 – v.1.0

Page 3

Executive Summary

This deliverable follows up on D1.7 (Karampatakis et al., 2015) and links the previously
extracted code lists with external datasets. The result of this work is a set of publicly available
linksets. We created links between 16 pairs of datasets amounting to the total of 20 975 links.
The generated linksets along with linkage rules used to produce them are available from
https://github.com/openbudgets/linksets. In most cases, linking was based on exact matches
over shared codes from code lists and was automated via SPARQL 1.1 Update operations.
However, we experimented also with more sophisticated approaches including fuzzy matching
and automatic translation. We discovered that the main bottleneck for linking large datasets is
the difficulty of loading data from RDF stores to link discovery tools. To avoid this issue, we
used data materialization and executed the linking procedures directly in RDF stores. These
efforts typically resulted in partial alignments between code lists, which made them unfit for
automated data migration. Hence, we concluded that the main value of linked data lies in data
enrichment for human consumers interactively exploring the linked datasets.

 D1.9 – v.1.0

Page 4

Abbreviations and Acronyms

API Application Programming Interface

CL-GEO Geographical Standard Code List

CPA Statistical classification of products by activity

ETL Extract Transform Load

GML Geography Markup Language

IRI Internationalized resource identifier

KML Keyhole Markup Language

NACE Statistical Classification of Economic Activities in the European Community

NUTS Nomenclature of Territorial Units for Statistics

RDF Resource Description Framework

SKOS Simple Knowledge Organization System

 D1.9 – v.1.0

Page 5

Table of Contents

1 INTRODUCTION ... 6

1.1 MOTIVATION ... 6

1.1.1 Motivating example ... 6

1.2 LINKING PROPERTIES ... 8

2 LINKED DATASETS ... 8

3 AUTOMATIC LINKING ..10

3.1 LINKING CPA TO DBPEDIA ...12

3.2 LINKING CL-GEO TO DBPEDIA ...13

3.3 AUTOMATED TRANSLATION ..13

4 MANUAL LINKING ..14

5 REUSED LINKS ...15

6 EVALUATION ..15

7 CONCLUSIONS ...16

8 REFERENCES ...16

 D1.9 – v.1.0

Page 6

1 Introduction
Thanks to various open data initiatives that arose in the recent years there is a plethora of
openly available datasets that can be reused without seeking a permission. A large share of
these datasets is available in RDF, making it feasible to link the data directly without prior pre-
processing, since the entities in the data are already identified via IRIs that can be directly
linked. We surveyed the available linked open datasets and chosen several of them that exhibit
overlaps with the code lists extracted for the deliverable 1.7 (Karampatakis et al., 2015).
Subsequently we prioritized linking datasets that promise to add more value to the code lists,
offsetting their value be the complexity of linking them. We also link the previously extracted
code lists among themselves. Before we describe how we linked the chosen datasets, let us
review our motivation to do so.

1.1 Motivation
Linking makes code lists comparable. In turn, if we make the relations between code list
concepts explicit, it improves comparability of the datasets described by the concepts. For
example, if code list concepts are marked as equivalent, they can be used interchangeably. In
this way, data described by linked concepts can be converted to a more homogeneous
representation, which eases its use in combination. In the terminology of ETL this process is
also known as data migration.

Linking can also enrich code lists with external data. Linked data may put the code lists in
context, such as by providing population counts for municipalities governed by budgetary units,
or enable new uses of budget data, such as by linking geographic code lists to geospatial data
with geometries that make map visualizations possible. The need for enrichment is particularly
apparent in code lists. Descriptions of code list concepts are typically terse. Code lists usually
contain only labels with codes, in some cases organized in hierarchical relations. Definitions,
scope notes, related links, and the like are often missing in code lists. Encyclopaedic data, in
particular, provides this kind of data. Viewed from this perspective, DBpedia,1 for instance,
appears to be a good linking target, since it contains such data extracted from Wikipedia.
Moreover, since DBpedia is multilingual, it can provide labels in several languages to concepts
from monolingual code lists. Due to these reasons DBpedia is one of the datasets included in
the following motivating example.

1.1.1 Motivating example
To illustrate the benefits of linking code lists we show an example of linking the CL-GEO code
list concept for the Ústecký region from the Czech Republic (IRI

http://data.openbudgets.eu/resource/codelist/cl-geo/CZ042). This is one of

the regions in which the OpenBudgets.eu project will track the use of EU funds. Using the data
from the CL-GEO code list we know the label of this region, its NUTS code2, and its level in
the NUTS hierarchy. If we link this resource to other datasets, we can discover more data.

Linking the concept for Ústecký region to LinkedGeoData (IRI

http://linkedgeodata.org/triplify/relation442452) provides access to

translations of the region’s label. For example, we learn that the German name of the region
is “Region Aussig”. An example use of these translations is to display them in localized
visualizations. Following the links in LinkedGeoData3 we can retrieve the geographic geometry

1 http://dbpedia.org

2 https://en.wikipedia.org/wiki/Nomenclature_of_Territorial_Units_for_Statistics

3 More precisely, SPARQL 1.1 property path

lgdo:members/rdf:rest*/rdf:first/lgdo:ref/geom:geometry/ogc:asWKT.

http://dbpedia.org/
https://en.wikipedia.org/wiki/Nomenclature_of_Territorial_Units_for_Statistics

 D1.9 – v.1.0

Page 7

of this region in the WKT format.4 The geometry can be used in map visualizations to render
the polygon representing the region (see Figure 1).

Figure 1: Simplified geometry of the Ústecký region

Link to LinkedStatistics’ Geo code list (IRI http://eurostat.linked-

statistics.org/dic/geo#CZ042) yields no new data, but serves as an alignment that

makes datasets described by the linked code lists better comparable, which is true for other
links as well.

Link to the NUTS Geovocab (IRI http://nuts.geovocab.org/id/CZ042) has similar

benefits as the link to LinkedGeoData. This dataset can provide us with the geographic
geometry of the region (in RDF, GML, or KML). Additionally, it gives us links to other datasets,
such as the European Environment Information and Observation Network (IRI

http://rdfdata.eionet.europa.eu/ramon/nuts2008/CZ042), which can be

traversed further to discover more data.

Link to DBpedia (IRI http://dbpedia.org/resource/Ústí_nad_Labem_Region)

provides us with useful contextual data including the region’s area, population, or links to
related resources. Example facts about Ústecký region retrieved from DBpedia are shown in
Table 1. This type of data can be used to frame analyses of budget or spending into the local
context. For example, population count can be used to compute spending per capita. However,
when reusing data from DBpedia, we should carefully examine its reliability. Since this is a
dataset derived from the community-created Wikipedia, it may contain errors or outdated
figures. A better source for the demographic data would be Eurostat, but it has not released
its data in a linkable format, even though there are several unofficial wrappers that provide its
data as linked data, such as the one produced by the LATC project.5 For instance, if we
compare the population count from DBpedia with data from the 2011 census carried out by the
Czech Statistical Office, we find a potential discrepancy, since the official population as of 2011
was 808 961.

4 https://en.wikipedia.org/wiki/Well-known_text

5 http://eurostat.linked-statistics.org

https://en.wikipedia.org/wiki/Well-known_text
http://eurostat.linked-statistics.org/

 D1.9 – v.1.0

Page 8

Property Value

Area in km2 5334.52

Leader name Oldřich Bubeníček

Population 852554

Website http://www.kr-ustecky.cz/

Table 1: Example facts about Ústecký kraj retrieved from DBpedia

Before we proceed with describing how the links from the example were generated, we cover
the linking properties that were used to capture the semantics of the generated links.

1.2 Linking properties
Simple Knowledge Organization System (SKOS)6 offers several linking properties that cover
diverse kinds of relations between concepts from knowledge organization systems, such as

code lists. These linking properties include skos:closeMatch, skos:exactMatch,

skos:broadMatch, skos:narrowMatch and skos:relatedMatch.7

skos:broadMatch and skos:narrowMatch indicate a hierarchical relation between the

linked resources. They are defined as subproperties of skos:broader and skos:narrower

respectively and can be considered as their analogues for use between datasets. Similarly,

skos:relatedMatch is an analogue of skos:related for associative links between

datasets. skos:exactMatch and skos:closeMatch express equality relation. While

skos:exactMatch is a transitive property that indicates that the resources it links can be

used interchangeably, skos:closeMatch in an intransitive property with a weaker equality

semantics that indicates interchangeability only in some applications. We used

skos:exactMatch in cases when one-to-one links were discovered, whereas

skos:closeMatch was used if multiple links for the same resource were found or if the linking

was done in a fuzzy manner, possibly indicating an approximate alignment.

With the preliminaries covered we now turn to a discussion of the generated links.

2 Linked datasets
We paired the datasets in tables 2 and 3 and attempted to discover links between the pairs.
Some of these datasets are the code lists extracted in deliverable D1.7, while others are
external. There are several well-known linked datasets, including DBpedia and
LinkedGeoData. A significant target of the generated links are the code lists from the Metadata
Registry8 maintained by the EU Publications Office, including code lists for currencies or
budget amount statuses. For each dataset we list its name by which it is referred to further in
this text, the URL where it can be found, and an indication whether the dataset is external to
OpenBudgets.eu or not.

6 https://www.w3.org/TR/skos-reference/

7 http://www.w3.org/TR/skos-reference/#mapping

8 http://publications.europa.eu/mdr

http://www.kr-ustecky.cz/
https://www.w3.org/TR/skos-reference/
http://www.w3.org/TR/skos-reference/#mapping
http://publications.europa.eu/mdr

 D1.9 – v.1.0

Page 9

Dataset URL

Central Product
Classification (CPC)

https://github.com/openbudgets/Code-
lists/tree/master/UnifiedViews/skosified/cpc

Classification of Products
by Activity (CPA)

https://github.com/openbudgets/Code-
lists/tree/master/UnifiedViews/skosified/cpa

Geographical Standard
Code List (CL-GEO)

https://github.com/openbudgets/Code-
lists/tree/master/UnifiedViews/skosified/cl_geo

ESA 2010 Financial assets https://github.com/openbudgets/Code-
lists/tree/master/UnifiedViews/skosified/ESA2010_financial_
assets

ESA 2010 Transactions in
financial assets and
liabilities

https://github.com/openbudgets/Code-
lists/tree/master/UnifiedViews/skosified/ESA2010_assets_an
d_liabilities

ESIF funds https://github.com/openbudgets/datasets/blob/master/ESIF/2
014/codelists/esif-funds.ttl

ESIF member states https://github.com/openbudgets/datasets/blob/master/ESIF/2
014/codelists/esif-member-states.ttl

ESIF programs https://github.com/openbudgets/datasets/blob/master/ESIF/2
014/codelists/esif-program.ttl

OBEU budget phases https://github.com/openbudgets/data-
model/blob/master/budget/budget-codelists.ttl

OBEU currencies https://github.com/openbudgets/Code-
lists/tree/master/UnifiedViews/skosified/currencies

OENACE https://github.com/openbudgets/Code-
lists/blob/master/UnifiedViews/skosified/oenace/oeanace.ttl

PRODCOM list (list of
products of the European
Community)

https://github.com/openbudgets/Code-
lists/tree/master/UnifiedViews/skosified/prodcom

STAKOD https://github.com/openbudgets/Code-
lists/tree/master/UnifiedViews/skosified/stakod-greek

Standard International
Trade Classification (SITC)

https://github.com/openbudgets/Code-
lists/tree/master/UnifiedViews/skosified/sitc

Table 2: Linked internal datasets

https://github.com/openbudgets/Code-lists/tree/master/UnifiedViews/skosified/cpc
https://github.com/openbudgets/Code-lists/tree/master/UnifiedViews/skosified/cpc
https://github.com/openbudgets/Code-lists/tree/master/UnifiedViews/skosified/cpa
https://github.com/openbudgets/Code-lists/tree/master/UnifiedViews/skosified/cpa
https://github.com/openbudgets/Code-lists/tree/master/UnifiedViews/skosified/cl_geo
https://github.com/openbudgets/Code-lists/tree/master/UnifiedViews/skosified/cl_geo
https://github.com/openbudgets/Code-lists/tree/master/UnifiedViews/skosified/ESA2010_financial_assets
https://github.com/openbudgets/Code-lists/tree/master/UnifiedViews/skosified/ESA2010_financial_assets
https://github.com/openbudgets/Code-lists/tree/master/UnifiedViews/skosified/ESA2010_financial_assets
https://github.com/openbudgets/Code-lists/tree/master/UnifiedViews/skosified/ESA2010_assets_and_liabilities
https://github.com/openbudgets/Code-lists/tree/master/UnifiedViews/skosified/ESA2010_assets_and_liabilities
https://github.com/openbudgets/Code-lists/tree/master/UnifiedViews/skosified/ESA2010_assets_and_liabilities
https://github.com/openbudgets/datasets/blob/master/ESIF/2014/codelists/esif-funds.ttl
https://github.com/openbudgets/datasets/blob/master/ESIF/2014/codelists/esif-funds.ttl
https://github.com/openbudgets/datasets/blob/master/ESIF/2014/codelists/esif-member-states.ttl
https://github.com/openbudgets/datasets/blob/master/ESIF/2014/codelists/esif-member-states.ttl
https://github.com/openbudgets/datasets/blob/master/ESIF/2014/codelists/esif-program.ttl
https://github.com/openbudgets/datasets/blob/master/ESIF/2014/codelists/esif-program.ttl
https://github.com/openbudgets/data-model/blob/master/budget/budget-codelists.ttl
https://github.com/openbudgets/data-model/blob/master/budget/budget-codelists.ttl
https://github.com/openbudgets/Code-lists/tree/master/UnifiedViews/skosified/currencies
https://github.com/openbudgets/Code-lists/tree/master/UnifiedViews/skosified/currencies
https://github.com/openbudgets/Code-lists/blob/master/UnifiedViews/skosified/oenace/oeanace.ttl
https://github.com/openbudgets/Code-lists/blob/master/UnifiedViews/skosified/oenace/oeanace.ttl
https://github.com/openbudgets/Code-lists/tree/master/UnifiedViews/skosified/prodcom
https://github.com/openbudgets/Code-lists/tree/master/UnifiedViews/skosified/prodcom
https://github.com/openbudgets/Code-lists/tree/master/UnifiedViews/skosified/stakod-greek
https://github.com/openbudgets/Code-lists/tree/master/UnifiedViews/skosified/stakod-greek
https://github.com/openbudgets/Code-lists/tree/master/UnifiedViews/skosified/sitc
https://github.com/openbudgets/Code-lists/tree/master/UnifiedViews/skosified/sitc

 D1.9 – v.1.0

Page 10

Dataset URL

DBpedia http://dbpedia.org

EU budget amount status http://publications.europa.eu/mdr/authority/eu-budget-
amount-status/index.html

EU currencies http://publications.europa.eu/mdr/authority/currency/index.ht
ml

EU programs http://publications.europa.eu/mdr/resource/authority/eu-
programme/skos/eu-programme-skos.rdf

LinkedGeoData http://linkedgeodata.org

LinkedStatistics GEO http://eurostat.linked-statistics.org/dic/geo

NUTS Geovocab http://nuts.geovocab.org

Table 3: Linked external datasets

Links between these datasets were created either automatically or manually. In several cases
we reused existing links and converted them to RDF.

3 Automatic linking
Automatic linking compares the descriptions of candidate resource pairs and determines if their
similarity exceeds a threshold that is required for the pair to be linked. Similarity can be based
on exact or fuzzy matches. For example, if 2 resources share the same code, they can be
considered equal. This is often the case for code lists, which can be linked via notations of
their concepts. We used linking via exact match of concept notations (attached via the

skos:notation property) in most of the linking tasks described in this deliverable.

If shared concept notations were not available in the interlinked datasets, we resorted to linking
via labels in natural language. This approach is fraught with numerous issues as labels are not
necessarily unique identifiers of the concept they label and their specificity is low (Mynarz,
2012). Labels can be ambiguous due to homonymy, or there can be multiple synonymous
labels for the same concept. Unfortunately, code lists rarely offer more than labels for their
concepts and linking code lists is thus inherently imprecise. Hierarchical organization of code
lists can help provide some context for ambiguous labels but it requires the broader concepts
to have already been matched, i.e. iterative processing would be needed.

We used SPARQL 1.1 Update9 and Silk link discovery framework10 for automatic linking.
Additionally, we experimented with OpenRefine’s11 reconciliation extension to explore the
feasibility of diverse data pre-processing options.

9 https://www.w3.org/TR/sparql11-update

10 http://silkframework.org

11 http://openrefine.org

http://dbpedia.org/
http://publications.europa.eu/mdr/authority/eu-budget-amount-status/index.html
http://publications.europa.eu/mdr/authority/eu-budget-amount-status/index.html
http://publications.europa.eu/mdr/authority/currency/index.html
http://publications.europa.eu/mdr/authority/currency/index.html
http://publications.europa.eu/mdr/resource/authority/eu-programme/skos/eu-programme-skos.rdf
http://publications.europa.eu/mdr/resource/authority/eu-programme/skos/eu-programme-skos.rdf
http://linkedgeodata.org/
http://eurostat.linked-statistics.org/dic/geo
http://nuts.geovocab.org/
https://www.w3.org/TR/sparql11-update
http://silkframework.org/
http://openrefine.org/

 D1.9 – v.1.0

Page 11

In most cases we created links based on shared codes, which allowed us to link data simply
by exact joins over the codes. For example, LinkedGeoData was linked to CL-GEO via
common NUTS codes. First, we extracted the resources with NUTS codes from
LinkedGeoData and then we linked them using the SPARQL Update operation listed in
Example 1. The list of dataset pairs for which we performed automated linking is shown in
Table 4.

PREFIX lgdo: <http://linkedgeodata.org/ontology/>

PREFIX skos: <http://www.w3.org/2004/02/skos/core#>

INSERT {

 GRAPH <http://data.openbudgets.eu/resource/linkset/cl-geo-to-linkedgeodata> {

 ?source skos:exactMatch ?target .

 }

}

WHERE {

 GRAPH <http://data.openbudgets.eu/resource/codelist/cl-geo> {

 ?source a skos:Concept ;

 skos:notation ?code .

 }

 GRAPH <http://linkedgeodata.org> {

 ?target lgdo:ref%3ANUTS ?code .

 }

}

Example 1: SPARQL Update operation generating links via shared codes

Source Target Linking predicate # of links

CL-GEO NUTS Geovocab skos:exactMatch 1407

CL-GEO LinkedGeoData skos:exactMatch 175

CL-GEO LinkedStatistics GEO skos:exactMatch 1844

CL-GEO DBpedia skos:closeMatch 1090

CL-GEO ESIF member states skos:exactMatch 30

CPA DBpedia skos:exactMatch,

skos:narrowMatch
2806

ESIF programs ESIF funds skos:broadMatch 677

EU currencies OBEU currencies skos:exactMatch 160

Table 4: Datasets linked automatically

 D1.9 – v.1.0

Page 12

3.1 Linking CPA to DBpedia
While DBpedia can provide rich encyclopaedic data, linking it is difficult due to its size and
messiness. We decided to link the CPA 2008 code list to DBpedia. We used the October 2015
dumps of DBpedia.12 Due to the size of DBpedia we limited the datasets loaded into a local
mirror to those that were needed for the linking task. In particular, we used the English labels,
disambiguation links and redirects.

Due to the generality of CPA it is not possible to restrict DBpedia to a narrower subset, e.g.,
via classes. Since instances of most classes in DBpedia can be potential matches for CPA
concepts, we need to load all the resources from DBpedia. This amounts to 12 million triples
for the October 2015 version of DBpedia. Additionally, we used 14M triples of disambiguation
links and 7M triples of redirects. Using the disambiguation links we removed ambiguous
resources from the dataset. Labels of redirects were added to their target resources and the
redirecting resources without labels were deleted. Since we found out that acronyms tend to
be ambiguous, we used a heuristic that removed all resources labelled with a term made of 2
or more uppercase characters. This pre-processing left us with a 11M triples dataset.

Labels in DBpedia are ambiguous. Some ambiguous labels are distinguished explicitly via
disambiguation links. In some cases, DBpedia labels are distinguished only by character case.
For instance, DBpedia contains resource labelled “Coins” (http://dbpedia.org/resource/Coins,
a redirect for “Coin”), “COinS” (http://dbpedia.org/resource/COinS, ContextObjects in Spans),
and “COINS” (http://dbpedia.org/resource/COINS, Combined Online Information System).
Existence of such resources limits the use of normalization of labels. For example, lower-
casing such labels would lead to false positives, since all these resources would be linked to
CPA concept “Coins” (http://data.openbudgets.eu/resource/codelist/cpa/32.11).

Runtime of linking to DBpedia via Silk is dominated by the data loading time. While Silk allows
to parallelize the linking execution by setting the number of threads it uses, loading data from
RDF stores tends to be a bottleneck. The fundamental problem of loading data having the size
of DBpedia is that retrieving data chunked to smaller subsets requires stable ordering over the
whole dataset. Sorting a large set of triples is a computationally expensive operation. We
experimented with 2 RDF stores, OpenLink’s Virtuoso13 and Blazegraph,14 for local mirrors of
DBpedia. However, even on a strong server (64 GB RAM) we experienced out-of-memory
errors and other failures when loading DBpedia for linking. Both of the tested RDF stores
became unstable under heavy load and frequently halted. Therefore, we had to abandon this
approach and come up with a computationally feasible solution.

We used semi-automatic linking to explore what approach can be used to link CPA to DBpedia.
In this case, we employed OpenRefine with its RDF extension to pre-process CPA and
reconcile it with DBpedia using its English labels. The adopted semi-automated approach
consisted of automated reconciliation followed by manual refinement of the proposed
alignments.

Prior to reconciliation we normalized the labels from CPA to improve the recall of string
matching. We also removed the words that can be considered as “stop words” in the context
of CPA, such as “services” used as a suffix, since these words do not distinguish the CPA’s
terms. For this experiment we limited the linked CPA concepts to the 3 topmost levels in the
CPA’s hierarchy (371 concepts) to avoid overly specific concepts, such as “Undifferentiated
services produced by private households for own use”, which are less likely to yield a match
in DBpedia.

The CPA code list contains compound concepts, such as “Coal and lignite”, while Wikipedia,
and thus DBpedia in turn, instead contains basic-level categories such as “Coal” and “Lignite”.

12 http://vmdbpedia.informatik.uni-leipzig.de/2015-10/core-i18n/en

13 http://virtuoso.openlinksw.com

14 https://www.blazegraph.com

http://dbpedia.org/resource/Coins
http://dbpedia.org/resource/COinS
http://dbpedia.org/resource/COINS
http://data.openbudgets.eu/resource/codelist/cpa/32.11
http://vmdbpedia.informatik.uni-leipzig.de/2015-10/core-i18n/en
http://virtuoso.openlinksw.com/
https://www.blazegraph.com/

 D1.9 – v.1.0

Page 13

This mismatch makes linking more difficult. To solve this problem, we split the CPA labels
containing terms joined by conjunctions and reconciled the constituent terms separately. The

links from the compound concepts in CPA were typed as skos:narrowMatch. For example,

“Coal” from DBpedia is a narrower concept to “Coal and lignite” from CPA.

Following the approach tried using OpenRefine we converted the linking procedure into a
series of SPARQL 1.1 Update operations so that its execution could be automated. Instead of
using on-the-fly normalization we materialized the normalized versions of CPA and DBpedia

labels as objects of skos:hiddenLabel. However, due to limited expressivity of SPARQL

we could not completely replicate the character normalization and tokenization that was
feasible in OpenRefine.

We created 2 types of links for this pair of datasets. We used skos:closeMatch for matches

based on complete labels of CPA concepts, while skos:narrowMatch was used for matching

tokens in compound labels. In case of exact matches, we post-processed the generated links
via SPARQL Update to keep only the links from the most specific CPA concepts if they had
parents sharing the same label that were linked to the same DBpedia resources. This step was
motivated by a common guideline in subject indexing that prescribes to use the most specific
concept available.

The runtime of this task was dominated by execution of SPARQL Update operations used for
data pre-processing. However, it was still several orders of magnitude faster than loading data
to link to Silk. The execution time of the actual linking was negligible compared to the duration
of data pre-processing. Since all the necessary data was already transformed into the desired
format and materialized, linking only needs to perform a join, which is a well-optimized
operation in RDF stores.

3.2 Linking CL-GEO to DBpedia
We also linked the CL-GEO code list to DBpedia, using its pre-processed version of the latter
described above. We formalized the linking procedure using SPARQL Update operations. The
links were created by matching the labels to CL-GEO concepts. The resulting links were
subsequently post-processed. If several CL-GEO concepts linking to the same DBpedia
resource were found, we retained the links from capital cities denoted by codes ending with
“_CAP” and removed others. This decision was motivated by observing that DBpedia usually
describes capitals instead of the regions with the same name. Following similar reasoning we
preferred the links to the most specific CL-GEO concepts and removed the duplicated links
connecting their parent concepts.

3.3 Automated translation
When two code lists do not share a common element, similarities can be searched across the
labels that describe each term. As term description words may be ordered differently, the
similarity checking tool can tokenize each term to words that are then compared separately.
While tokenization may work in some cases, it usually increases the rate of false positives, so
that it should not be recommended across the board. In the worst case, the descriptions of two
similar terms might be expressed with completely different yet synonymous words. While string
similarity cannot discover this kind of similarity, other tools may be used, as long as they can
semantically analyse and compare two terms.

Such issues may arise in the common case of the automatic linking of two code lists expressed
in different languages. To automate the creation of links for these code lists, a cross-language
semantic similarity engine would ideally “understand” and compare the meaning of each term.
Using a more straightforward approach, one of the code lists should be first translated into the
language of the other. Afterwards, the process described previously would follow: either string
similarity or single-language semantic comparison.

Apart from the different wording issue, the translation part of the process can further deteriorate
the result of the automatic linking process because the translator is not always able to

 D1.9 – v.1.0

Page 14

understand the semantic context of the terms and introduces new, foreign concepts in
translation.

For experimentation purposes, a Microsoft Translator plugin for the UnifiedViews ETL
framework15 was developed in this deliverable. The Microsoft Translator API was selected,
among other reasons, because of the 2 million characters free tier offering. A quick evaluation
was performed, using the NACE code list and its Greek counterpart (STAKOD). The two code
lists are actually already linked, as there is a corresponding term in STAKOD for each NACE
term. This fact offers a testbed in order to measure how many term pairs would be recognised
similar, just by translating the Greek terms and then comparing them to the English ones,
without taking into account the existing links.

Using a simple setup in Silk, with string equality comparison, 417 out of the 997 terms found
in NACE, were found similar to their counterparts in STAKOD. We experimented with fuzzy
string distance metrics, such as the Levenshtein distance, and used more tolerant similarity
thresholds, but doing so led to an increase of the false positives rate without better recall of
true positives. The failure to discover the rest of the links from the testbed can be attributed to
a variety of factors. First, the quality of the translation is not always predictable. Despite that
the translation of the mostly noun-based terms was not of such low quality and could be
characterized as moderate to good. The second factor is that there are terms that are
translated into expressions with words synonymous to the ones in the target code list. For
instance, “manufacture of plastic packaging items” means the same as “manufacture of plastic
packaging goods” but the terms are treated as dissimilar using string equality. Increasing the
similarity threshold using fuzzy distance metrics reveals more of the expected links but also
introduces many false positives, due to the nature of the code lists – many child terms differ
from their parent terms only by a few words.

The third and rare factor is the difference caused by local spelling variations (e.g.,
homogenised vs. homogenized), which might be solved by selecting the appropriate locality in
the translation API calls in the first place, given that the code lists use spelling consistently
throughout.

An additional linking method could also utilize a semantic similarity comparison to cover the
terms for which no matches were found. We tried the online demo of Dandelion.eu16 to assess
the performance of such solutions. The goods vs. items example mentioned before scored 92
% similarity. A falsely similar term “manufacture of plastics products” scored 86 %. In that case,
the selection of the correct term to link might be based on the highest score. The highest score
would be meaningful if it is actually higher than a threshold. For instance, a highest score of
60 % would not be considered high enough to produce a link. Nevertheless, the complexity of
this solution is the main reason it is considered out of the scope of this deliverable and remains
to be a future research topic.

4 Manual linking
Manual linking was used for small code lists, for which the overhead associated with linking
automation would not be justified.

Source Target Linking predicate # of links

EU budget amount status OBEU budget phases skos:broadMatch 4

ESIF programs DBpedia skos:exactMatch 4

15 http://www.unifiedviews.eu

16 https://dandelion.eu

http://www.unifiedviews.eu/
https://dandelion.eu/

 D1.9 – v.1.0

Page 15

ESIF EU programs EU programs skos:exactMatch 6

ESIF EU funds EU programs skos:exactMatch 6

Table 5: Datasets linked manually

5 Reused links
We reused the mappings provided by Eurostat for several pairs of code lists. For example, we
used the CPA-CPC mapping tables.17 The mappings are available in CSV, so we converted
them to RDF using OpenRefine’s RDF extension.18

Source Target Linking predicate # of links

Central Product
Classification (CPC)

Classification of Products
by Activity (CPA)

skos:narrowMatch 3851

ESA 2010 Financial
assets

ESA 2010 Transactions in
financial assets and
liabilities

skos:exactMatch 38

PRODCOM Classification of Products
by Activity (CPA)

skos:exactMatch 5567

Standard
International Trade
Classification (SITC)

Classification of Products
by Activity (CPA)

skos:narrowMatch 3310

Table 6: Datasets, for which existing links were reused

6 Evaluation
We performed manual validation of a sample of the links produced using automated heuristics.
We chose to evaluate the links generated between CPA and DBpedia, since in effect it
employed fuzzy matching, albeit its approximate nature was caused by normalization done
during data pre-processing instead of the use of fuzzy matching techniques during runtime.

The generated links were evaluated by 2 domain experts. Each of the experts received a
random sample of 200 links and was asked to mark the links either as correct or incorrect, or
skip the judgement if the correctness of a link cannot be determined. A half of these links was
shared among the experts and the other half was unique per expert. We involved 2 domain
experts to evaluate the correctness of links. The experts worked independently, so that we
could examine the consistency of their evaluation of the shared links.

We used precision to evaluate the quality of the generated links. Precision was computed as
the ratio of true positives to all positives. Measures that take true negatives into account, such
as accuracy, are not suitable for evaluation of instance matching because of the class

17
http://ec.europa.eu/eurostat/ramon/relations/index.cfm?TargetUrl=LST_LINK&StrNomRelCode=CPA%
202008%20-
%20CPC%202&StrLanguageCode=EN&StrOrder=2&CboSourceNomElt=&CboTargetNomElt=

18 http://refine.deri.ie

http://ec.europa.eu/eurostat/ramon/relations/index.cfm?TargetUrl=LST_LINK&StrNomRelCode=CPA%202008%20-%20CPC%202&StrLanguageCode=EN&StrOrder=2&CboSourceNomElt=&CboTargetNomElt=
http://ec.europa.eu/eurostat/ramon/relations/index.cfm?TargetUrl=LST_LINK&StrNomRelCode=CPA%202008%20-%20CPC%202&StrLanguageCode=EN&StrOrder=2&CboSourceNomElt=&CboTargetNomElt=
http://ec.europa.eu/eurostat/ramon/relations/index.cfm?TargetUrl=LST_LINK&StrNomRelCode=CPA%202008%20-%20CPC%202&StrLanguageCode=EN&StrOrder=2&CboSourceNomElt=&CboTargetNomElt=
http://refine.deri.ie/

 D1.9 – v.1.0

Page 16

imbalance caused by the number of true negatives significantly exceeding the number of true
positives (Christen, 2012, p. 165). Measures that require false negatives are also not available
since we only know if the evaluated positives are true or false.

Precision was evaluated using the 200 links that were judged by a single domain expert. Out
of these links 20 were marked as undecidable due to lack of information necessary to establish
whether a link is correct or not. These links were left out of the sample used for computing

precision. Precision of the remaining 180 links was 0.683 (0.8 for skos:closeMatch and

0.665 for skos:narrowMatch). Low precision may indicate that the employed data pre-

processing was too aggressive and introduced false positives. The domain experts achieved
68.48 % consistency in evaluation of the shared links, excluding those that either expert judged
as undecidable. The low consistency may be attributed to vague and ambiguous descriptions
of the linked concepts involved in the evaluation.

7 Conclusions
We created links between 16 pairs of datasets, both among the code lists used in
OpenBudgets.eu and third-party datasets. The generated links in RDF along with the linking
rules employed are openly available from https://github.com/openbudgets/linksets. The
objectives of linking are dataset alignment and enrichment of code lists, so that further
contextual data becomes available. In this deliverable, we described the approaches we used
for automatic linking, including automatic translation. The most common and reliable approach
for linking we used is based on shared codes identifying the code list concepts.

Although the task of linking data may seem deceptively easy from the outset, aiming for high-
quality results is difficult. This rings especially true for code lists, the description of which is
usually too short to enable to automatically discover reliable links; they are actually sometimes
too ambiguous even for manual linking, and automation can hardly produce more correct links
than the manual approach. While linking automation significantly improves the speed of linking
execution, it is not worth pursuing if good results cannot be achieved manually.

Most of the problems encountered in this work were technical. While the performance of link
discovery tools is good, the performance of loading data from RDF stores is not. In fact, we
identified it as the main bottleneck. Nevertheless, it is unclear whether this is an issue of link
discovery tools or of RDF stores. Linking tools can optimize their way of querying large data
(e.g., using scrollable cursors), while RDF stores can optimize the sequential access to larger
datasets. Ultimately, we avoided problems associated with loading data from RDF stores by
executing linking procedures directly in RDF stores. We achieved the best performance when
data materialization was used.

A fundamental shortcoming of most of the generated linksets is that their linkage is partial.
Typically, there are resources left unlinked in either one of both linked datasets. This makes
the links unsuitable for data migration and alignment, because doing so requires a complete
mapping between the paired datasets. However, even incomplete linksets have value. In
particular, human users can benefit from them as they interactively explore data and navigate
to related data sources.

Linking code lists will continue in the OpenBudgets.eu projects to cater for the needs identified
by the project’s use cases. In such cases, we will benefit from the lessons learnt that we
presented in this deliverable.

8 References
● Christen, Peter. Evaluation of matching quality and complexity (2012). In: Data

matching: concepts and techniques for record linkage, entity resolution, and duplicate

detection. Berlin; Heidelberg: Springer, pp. 163–184. DOI 10.1007/978-3-642-31164-

2_7.

https://github.com/openbudgets/linksets

 D1.9 – v.1.0

Page 17

● Karampatakis, Sotiris; Ioannidis, Lazaros; Philippides, Panagiotis Marios; Bratsas,

Charalampos (2015). Deliverable D1.7: Extraction and transformation of relevant

code lists. https://openbudgets.atlassian.net/browse/OB-18

● Mynarz, Jindřich (2012). Computing label specificity.

http://blog.mynarz.net/2012/01/computing-label-specificity.html

https://openbudgets.atlassian.net/browse/OB-18
http://blog.mynarz.net/2012/01/computing-label-specificity.html

