>nBudgets..

OpenBudgets.eu: Fighting Corruption with Fiscal Transparency

Project Number: 645833 Start Date of Project: 01.05.2015 Duration: 30 months

Deliverable 2.1
Tools for Semantic Lifting of Multiformat

Budgetary Data

Dissemination Level Public

Due Date of Deliverable 2A908t2h21001 6

Actual Submission Date 30.03.2016

Work Package WP 2, Data Collection and Mining

Task T2.1

Type Demonstrator

Approval Status Draft

Version 1.0

Number of Pages 31

Filename Deliverable-2.1-H2020
OpenBudgets.eu

Abstract: This deliverable describes data transformation tools for semantic lifting
based on the data model designed in Work Package 1. These tools consists of (i)
pipelines developed on general purpose ETL (Extract, Transform, Load) platforms, and
(i) a wizard guiding non-expert users in transformation of budget data to
OpenSpending’s FDP data format. A new user-friendly RDF transformation wizard for
the OBEU platform is conceptualized and currently under development.

The information in this document reflects only the author’s views and the European Community is not liable for any use
that may be made of the information contained therein. The information in this document is provided “as is” without
guarantee or warranty of any kind, express or implied, including but not limited to the fitness of the information for a
particular purpose. The user thereof uses the information at his/ her sole risk and liability.

Project funded by the European Union’s Horizon 2020 Research and Innovation Programme (2014 — 2020)

V :nBudgets.
D2.1-v.1.0
History
Version Date Reason Revised by
0.1 14.03.2016 First revision Fabrizio Orlandi
0.2 16.03.2016 Second revision Jakub Klimek
Christiane
1.0 29.03.2016 Final version Engels, Fathoni
Musyaffa
Author List
Organisation Name Contact Information
FhG Christiane Engels christiane.engels@iais.fraunhofer.de
UBONN Fathoni Musyaffa musyaffa@cs.uni-bonn.de
UBONN Tiansi Dong tdong@uni-bonn.de
UEP Jakub Klimek klimek@ksi.mff.cuni.cz
UEP Jindfich Mynarz jindrich.mynarz@vse.cz
FhG Fabrizio Orlandi orlandi@iai.uni-bonn.de
UBONN/FhG Soéren Auer auer@cs.uni-bonn.de

Page 2

mailto:christiane.engels@iais.fraunhofer.de
mailto:musyaffa@cs.uni-bonn.de
mailto:tdong@uni-bonn.de
mailto:klimek@ksi.mff.cuni.cz
mailto:jindrich.mynarz@vse.cz
mailto:orlandi@iai.uni-bonn.de
mailto:auer@cs.uni-bonn.de

Y Budgets

D21-v.1.0

Executive Summary

This deliverable describes data transformation tools, both having been developed and being
under construction, for semantic lifting based on the predefined OBEU data model detailed in
Deliverables 1.2, 1.3, 1.4. Semantic Lifting aims at adding ‘meaning’ or extra meta
(semantics) to existing structured/semi-structured data following Linked Data principles and
standard Semantic Web technologies. The aim is to be able to load and transform budget
data, on the OpenBudgets.eu platform, from different source data formats to the RDF-based
target data format developed in WP1. In order to do this, specific data transformation
pipelines have been developed using the UnifiedViews and LinkedPipes ETL platforms.
Moreover, a data transformation wizard is currently being deployed directly on the
OpenSpending platform. A novel RDF ETL wizard is conceptualized and under development.

The general purpose RDF transformation platforms, UnifiedViews', and its successor
LinkedPipes ETL?, are used as the base for the development of tools specific for OBEU data
transformation. Data transformation pipelines have been developed, which can transform
large datasets into RDF format by running them at one of the two platforms. The creation of
such pipelines which are dataset specific demands expert knowledge on the Semantic Web.

In order to allow users to upload datasets into the OBEU platform without expert knowledge
in semantic web we aim at using a wizard. Throughout a few simple user interaction steps all
information needed for a correct data transformation will be collected.

A data transformation wizard into the OpenSpending’s Fiscal Data Package (FDP) format
has been developed for data import on the OpenSpending platform. It provides semantic
lifting by adding meta-data to CSV datasets yet without incorporating standard Linked Data
principles.

Following the same concept of the OpenSpending wizard for FDP data, another RDF data
transformation wizard has been conceptualized and is currently under construction. This
wizard collects favorite features of pipelines developed at UnifiedViews (as well as
LinkedPipes ETL) and the wizard running at the OpenSpending platform.

' http://unifiedviews.eu
2 http://etl.linkedpipes.com

Page 3

http://unifiedviews.eu/
http://etl.linkedpipes.com/

@ OpenBudgets..

D21-v.1.0

Page 4

F Ope Budgets

D21-v.1.0

Abbreviations and Acronyms

uv UnifiedViews

LP-ETL LinkedPipes ETL

0S OpenSpending

ETL Extract, Transform, Load

FDP Fiscal Data Package

DSD Data Structure Definition

OBEU OpenBudgets.eu

RDF Resource Description Framework

ESIF European Structural and Investment Funds

Page 5

@ OpenBudgets..

D21-v.1.0

Table of Contents

1 Introduction

2 General Architecture of RDF Data Transformation

3 Pipelines in UnifiedViews and LinkedPipes ETL platforms

3.1 Pipelines developed using the UnifiedViews Platform
3.1.1. ESIF 2014-2020 CSV Pipeline
3.1.2. EU Budget 2014 XML Pipeline
3.2 Pipelines developed using the LinkedPipes ETL Platform
4 The FDP Data Transformation Wizard
Step 1 Providing a CSV dataset
Step 2 Describing the dataset

Step 3 Providing metadata information

Step 4 Confirming and Downloading
5 Towards An RDF Data Transformation Wizard

Step 1 Load a raw dataset.

Step 2 Map Columns to OBEU Components

Step 3 Map to existing code lists
Step 4 Check and Save the Result
Step 5 Push to RDF Triple Store

6 Conclusion and Future Work

7 References

Page 6

Y Budgets

D21-v.1.0
List of Figures
Figure 1. General Architecture of RDF data transformation........................oca 8
Figure 2. A graphical user interaction layer is added to the general architecture................... 9
Figure 3. ESIF datasets transformation pipeline..............ccooiii e, 11
Figure 4. Mapping columns into semantic properties...........cccoviiiiiiiiiice e, 12
Figure 5. Construct query to form IRIs in some properties..............coooeiiiiiiiiiiiciin, 13
Figure 6. Attaching additional information for the whole dataset..........................ol. 14
Figure 7. Attaching DSD into pipeline..........ccooiiiiii e, 15
Figure 8. Pipeline to extract functional classification code list from ESIF dataset............... 16
Figure 9. Transformation of EU Budgets 2014 XML dataset into OBEU RDF.................. 18
Figure 10. LinkedPipes ETL Pipeline for ESIF 2014-2012 Datasetcccccoeiiien.e 19
Figure 11. Visual debugging in LinkedPipes-ETL. ... 19
Figure 12. LinkedPipes ETL Pipeline for EU Budget 2014 Dataset.......................co..ee. 20
Figure 13. The start page of the wizard........ ..., 21
Figure 14. The system identified errors in a CSV file, and asked users to view................. 22
Figure 15. Error report appears during the data providing step............ccocooiiiiinns. 22
Figure 16. The structure of an uploaded CSV file is shown with 3 rows as sample............. 23
Figure 17. An interface to describe column information...................cooon, 24
Figure 18. Candidate data types of COlUMNS......... ..o 24
Figure 19. Candidate concepts are inferred from the sample value of the column.............. 24
Figure 20. User interface for Metadata. ..., 25
Figure 21. Confirmation/Download of a generated meta dataset.....................ocoeeie . 25
Figure 22. Initial user interface for data upload.................ccooiiiiiiiiiii 27
Figure 23. Concept of a wizard collection mapping information.........................oene 28
Figure 24. Interface for Code List Extraction..................ooiiiiii i, 29
Figure 25. Mapping Summary for Checking and Confirmation...........................o 30
List of Tables
Table 1. List of required DPUs to transform CSV to RDF formatl 10
Table 2. List of required DPUs to transform XML to RDF format......................coooeiini, 17

Page 7

Y Budgets

D21-v.1.0

1 Introduction

This deliverable reports data transformation tools for Semantic Lifting of Multiformat Financial
Data (Task 2.1). We start with testing two RDF conversion tools developed by the Charles
University in Prague and UEP (OBEU partner): UnifiedViews and its successor LinkedPipes
ETL. Both are open source tools developed for defining, executing, monitoring, scheduling,
and sharing RDF data processing. Both provide graphical user interfaces to perform the ETL
tasks, including the process of administration, debugging and monitoring. UnifiedViews has
reached version 2.3.0 and is relatively mature in terms of stability.

UnifiedViews is a platform for general purpose of RDF transformation. A ETL data
transformation tool is developed by creating Data Processing Units (DPU) as plugins of the
platform. LinkedPipes ETL is the successor of UnifiedViews, developed based on experience
with UnifiedViews, following the same paradigm as UnifiedViews. At the moment of writing
this deliverable, it is still in an early developing stage, so DPU availability has not been as
extensive as in UnifiedViews. Some DPUs in LinkedPipes are designed differently to the
DPUs developed in UnifiedViews due to recently evolved standards such as CSV on the
Web?.

Using these two platforms, we already developed over 40 pipelines (data transformation
tools) which effectively transformed OBEU financial datasets in heterogeneous formats (e.g.,
XML, CSV) into the RDF format based on the data model and code lists defined in WP1.

However, there are some concerns regarding the use of UnifiedViews. First relating to
performance, and second, relating to the extendability of the user interface. Though
LinkedPipes ETL has a potential to solve these concerns, both of them require users to have
some expertise in semantic web, for example, both might require users to be able to write
SPARQL statements manually.

On other hand, a data upload wizard has been developed and tested. This wizard for
OpenSpending promotes CSV dataset into FDP (Financial Data Package) format with
user-friendly interfaces, and tested at the platform. This wizard does not require users to
have technical expert knowledge.

It is desirable to have an RDF data transformation tool which is both powerful and not
requiring expert knowledge in the field of semantic web. To this end, an RDF data
transformation wizard is conceptualized and under construction. This wizard aims at
transforming tabular-structured datasets, i.e. CSV, and tree-structured datasets, i.e., XML,
into the OBEU RDF data format. The main idea of this wizard is that DSD (Data Structure
Definition) files and code list files of the input datasets will be generated by mapping columns
and data cells into predefined terms of the data model. Such a mapping is realized by
selecting terms in data model defined in WP1 and choosing corresponding concepts in the
dataset. After that, pipelines including SPARQL queries will be generated and executed by
the backend of the wizard to transform the input datasets into the RDF format.

The rest of the deliverable is structured as follows: Section 2 presents the high-level
architecture of RDF data transformation tools; Section 3 describes the pipelines developed at

3 https://www.w3.org/standards/techs/csv#w3c_all

Page 8

https://www.w3.org/standards/techs/csv#w3c_all

Y Budgets

D21-v.1.0

UnifiedViews and LinkedPipes ETL platforms; Section 4 illustrates the data transformation
wizard developed and equipped at the OpenSpending platform; and Section 5
conceptualizes a new RDF data transformation wizard, which is now under construction.

2 General Architecture of RDF Data
Transformation

OBEU Triple Store

Generate OBEU RDF Dataset

Create Pipelines

Generate OBEU Extract
Data Structure OBEU Code List

Raw Dataset

Figure 1. General Architecture of RDF data transformation

The general architecture RDF data transformation process is illustrated in Figure 1. From a
raw dataset, we first generate an OBEU data structure definition, and code lists, if included in
the dataset. Then the pipeline to transform the raw dataset into an RDF dataset is created.
The OBEU data structure file, the code list files, and the transformed RDF dataset are files in
RDF format, and will be pushed to the OBEU triple store.

At the UnifiedViews platform, users need to explicitly provide the data structure definition file,
and write SPARQL statements to add meta-data information and to modify the transformed
RDF dataset if necessary. We will explain this in Section 3 in detail.

For the OBEU platform, a user interaction layer is added as shown in Figure 2 that turns the
ETL tool into a wizard, which will be described in detail in Section 5.

Page 9

Y Budgets

D21-v1.0
OBEU Triple Store
Generate OBEU RDF Dataset
Create Pipelines .
Graphical
User
Generate OBEU Extract - Interaction
Data Structure OBEU Code List | Layer

Raw Dataset

Figure 2. A graphical user interaction layer is added to the general architecture

3 Pipelines in UnifiedViews and
LinkedPipes ETL platforms

Both utilized tools, UnifiedViews* and LinkedPipes ETL®, have installation instruction on their
web pages. UnifiedViews does not include the DPUs upon installation, but its installation
guide has extra instructions how to install UnifiedViews DPUs. LinkedPipes ETL includes the
basic DPUs after the installation.

Financial datasets have different structures and formats. Therefore, customized
transformation pipelines, which consist of DPUs and their interactions, are needed to retrieve
the contained financial information from different datasets. In general, ETL pipelines for
semantic lifting consist of several steps as follows: (1) downloading the dataset, (2) defining
dataset properties (e.g. which fields from raw dataset consist of dimensions and measures)
and data structure definition, (3) converting from its native format into RDF, (4) updating the
RDF graph, (5) extracting code lists, (6) transforming the RDF graph into files and/or
uploading the RDF graph into a triplestore and (7) generating metadata and storing it in the
triplestore and a data catalog such as CKAN.

4 https://arips.semantic-web.at/display/UDDOC/Installation+Guide
5 http://etl.linkedpipes.com/

Page 10

https://grips.semantic-web.at/display/UDDOC/Installation+Guide
http://etl.linkedpipes.com/

Y Budgets

D21-v.1.0

Previous deliverables in the OBEU project are related to this document. Deliverable D1.2
(Klimek et al. 2015a) and Deliverable D1.3 (Klimek et al. 2015b) elaborate on how both
budget and spending datasets can be defined via Data Structure Definition (DSD) files.
Deliverable D1.4 (Dudas et al. 2015) provides an RDF semantic vocabulary for OBEU
datasets. Readers are referred to these documents for further explanation of DSDs and
vocabularies for OBEU.

3.1 Pipelines developed using the UnifiedViews Platform

We have developed more than 40 transformation pipelines to transform various data formats
from several sources using the UnifiedViews platform. Two examples of transformation using
UnifiedViews from these datasets are explained in this section. The first example is ESIF
2014 dataset transformation from CSV format into OBEU RDF format. The second example
explains transformation of EU Budget 2014 dataset from XML format into OBEU RDF format.

3.1.1. ESIF 2014-2020 CSV Pipeline

In this section, an example of pipeline construction for transforming CSV datasets into RDF is
described. The ESIF dataset contains programs funded by five European Structural and
Investment Funds (ESIF)®. This dataset is available in several formats on the EU data portal’.

As the UnifiedViews’ default installation has no Data Processing Unit (DPU), we need to
install the required DPUs first in order to perform a transformation task in UnifiedViews.
There are several DPUs involved in constructing the pipeline for transforming the ESIF CSV
dataset into the OBEU RDF format. The list of required DPUs for ESIF tabular data
transformation are provided in Table 1.

DPU Functionality

uv-e-filesDownload Downloads files from external sources into the UnifiedViews
platform

uv-t-tabular Maps table into RDF

e-TextHolder Stores text files, can be used to hold Data Structure Definition

uv-t-filesToRdf Converts RDF file to RDF in-memory model

uv-t-sparglConstruct Provides a way to execute a SPARQL Construct query

uv-t-sparqlUpdate Provides a way to execute a SPARQL Update query
uv-t-graphMerger Merges RDF graphs
uv-t-rdfToFiles Serializes an RDF from graph into a file

8 http://ec.europa.eu/contracts _grants/funds_en.htm
7 https://cohesiondata.ec.europa.eu/dataset/ESIF-FINANCE-DETAILS/e4v6-qarrq

Page 11

http://ec.europa.eu/contracts_grants/funds_en.htm
https://cohesiondata.ec.europa.eu/dataset/ESIF-FINANCE-DETAILS/e4v6-qrrq

V OpenBudgets.

D21-v.1.0

Table 1. List of required DPUs to transform CSV to RDF format

The pipeline flow in Figure 3 describes the conversion of the ESIF 2014-2020 dataset for the
multi annual framework 2014 - 2020%. The DPU uv-e-filesDownload is utilized to
download the datasets. In this DPU, a direct link to the dataset in CSV format is provided.
The downloaded dataset is then converted from tabular CSV format into RDF using the DPU
uv-t-tabular. In this step the tabular transformer maps the necessary columns in the
dataset with semantic properties. The user provides the mapping using the interface of the
DPU uv-t-tabular, as shown in Figure 4.

l uv-e-filesDownload J [uv-t-sparqlUpdate] e-TextHolder]

Download Delete non-URIs

Provide DSD

output §=> table triplified¥able -> nput output {= input file -> filesInput

Define the dataset

[uv-t-tabular [uv-t-sparglUpdate] uv-t-filesToRdf]

triplifiedTaple -> input output = input rdfOugut -= input

uv-t-sparglConstruct uv-t-rdfGraphMerger e]
- | input -> data.ttl
Codelist linking output -> input J output -> input : e

Figure 3. ESIF datasets transformation pipeline.

8 http://ec.europa.eu/budget/mff/index_en.cfm

Page 12

http://ec.europa.eu/budget/mff/index_en.cfm

@ OpenBudgets..

D21-v.1.0

uv--tabular detail ol x
Name | uv-t-tabular |¢
Parent
Description ‘ ‘

[Use custom description [C] Use template configuration

DPU configuration “_Faulllolerance || About || Mapping Import/Export
|_I ignore missing coiumns

Mapping

Simple H Advanced - experimental functionality! || Xls mapping |

Column name Cutput type Language Use Dbftypes Property URI

iMS | _:}_uto_\Ll O |nnp::'.-‘dala.openDudqets.eu.-‘omoqu‘,r.-'dsd.-'a|mensmn.-'admlnlstratwel‘
iTo | |String ‘ s | | |http'_-'.-‘data.openbudqets.eu.-‘omoquv;'dsd.-‘dimension.-‘lunctionalcIas‘
[Funa | [stina_ [~] | | | nttp:/data.openbudgats eu/ontology/dsdidimension/fund \
iNaticna\ Amount | \Auto ‘L| O |http::'a‘data.openbudqets.eu.-‘omcloqv.-'dsd.-'ESlFQU14—2020:‘mea5ure‘
iT{)iaIAmuum i _Auto ‘ - O |hﬂp Jidata upenhudgets,eu.-‘ﬁnlaluqy.-‘dsd.-‘ESlF-2ﬂ14-2[]2{]:‘measurs‘
| EU Amount | fatto |=] O | nttpuicata.openbudgets eu/ontology/dsd/ESIF-2014-2020/measure |

| Add magpil |

Figure 4. Mapping columns into semantic properties.

According to the provided mapping, the dataset is transformed to RDF. However, the result
has to be improved. For example, it is required to set the value of the funds property to
“http://data.openbudgets.eu/resource/codelist/eu-funds/esf>" instead of “ESF”®
since ideally in RDF format, the value of dimension properties should be resources, i.e.
non-literals, which is not the case when we transform the dataset from its native formats.
Therefore we need to transform the values into referents by using SPARQL queries on the
graph that has created using the uv-t-tabular DPU. To do this, we utilize the transformer
DPUs uv-t-sparglConstruct and uv-t-sparqglUpdate. The DPU
uv-t-sparglConstruct is used for constructing new triples from generated RDF, such
as constructing new IRIs for funds, administrative classification and functional classification
from the string literals provided in the dataset. The screenshot in Figure 5 provides a
SPARQL query to construct IRIs for those dimensions from the corresponding literals in the
dataset by adding the respective prefix.

® European Social Fund, http://ec.europa.eu/esf/

Page 13

http://ec.europa.eu/esf/

@ OpenBudgets..
D21-v.1.0

uv-t-spargiConstruct detail olx

Name ‘ uv-t-sparglConstruct l
Parent
Description Codelist linking ‘

(8 Use custom de scription O use template configuration

DPU configuration H Fauit tolerance || About |

& Per-graph execution

SPARQL construct query

PREFIX obeu-dimension: <http./data.openbudgets.eu/ontology/dsd/dimension/>
PREFIX gb: <httpipurl.orgflinked-data/cube# >

CONSTRUCT { 751 obeu-dimension:fund ?urll
751 obeu-dimension:functionalClassification 7uri2.
751 obeu-dimension:administrativeClassification 7uri3.
7?51 gbidataSet <hitpi/data.openbudgets.eu/resource/datasetESIF-2014-2020> |
WHERE {
7?81 obeu-dimension:fund 7ol .
7?51 obeu-dimensionfunctionalClassification 702
751 obeu-dimension:administrativeClassification 703 .
BIND(URI(CONCAT("htp/data.openbudgets. eu/resource/ESIF-2014-2020/codelisteu-funds” LCASE(?01))) as 7urit).
BIND{URI{CONCAT("http:/data.openbudgets eu/resource/ESIF-2014-2020/codelistfunction” LCASE(?02))) as Turi2)
BIND{URI{CONCAT("http:/data.openbudgets eu/resource/ESIF-2014-2020/codelistMS/™ ?03)) as ?urid).

| Save | ‘ Cancel | | Copy from template | | Save as DPU template

Figure 5. Construct query to form IRIs in some properties.

The DPU uv-t-sparglUpdate is required to insert information about the dataset. We
need to provided a link to the DSD and specify the property values which are valid for to the
whole dataset, i.e. that the dataset amount measures are provided in Euro currency, the
European Union is the budgetary unit and the operation character is expenditure in this case.
The information is attached to the dataset instead of a single observation (or row in tabular
terms) via a SPARQL query. A screenshot is provided in Figure 6.

Page 14

@ OpenBudgets..

D21-v.1.0

uv-t-spargiUpdate detall

Name | uv-t-sparglUpdate

Parent

Description | pefine the dataset

[& Use custom description [use template configuration

DPU configuration || Fault tolerance || About |

& Pe r-graph execution

SPARQL update query "

PREFIX rdfs: <http/www.w3.0rg/2000/01/rdf-schema# >

PREFIX gb: <http:/purl.orglinked-data/cube®>

PREFIX obeu-dimension: ¢<http:/idata.openbudgets.eu/ontology/dsd/dimension/>
PREFIX obeu-attribute: <htip:/data.openbudgets.eu/ontology/dsd/attribute/>
PREFIX obeu-operation: <http/data.openbudgets.eu/resource/codelistoperation-
character/>

INSERT DATA {

<http://data.openbudgets.euresource/datasetESIF-2014-2020> a gb:DataSet ;
obeu-dimension:budgetaryUnit <http://dbpedia.org/resource/Eurcpean_Unions ;
obeu-attribute:currency <httpi//data.openbudgets.eu/codelistcurrency/EUR> :
obeu-dimension:operationCharacter obeu-operation:expenditure ;
gbstructure <httpu/data.openbudgets.eu/ontology/dsd/ESIF-2014-2020> .

Figure 6. Attaching additional information for the whole dataset.

Meanwhile, the data structure definition (DSD) which has been created separately is
imported into UnifiedViews using the e-TextHolder DPU, as shown in Figure 7. The DSD
is necessary to provide structural information regarding the dataset. The DPU
uv-t-filesToRdf converts the DSD into RDF, which will be merged with the output of
uv-t-tabular by the uv-t-rdfMerger DPU. Finally, the DPU uv-t-rdfToFiles
stores the merged RDF graph containing both DSD and dataset into an RDF serialization
format.

Page 15

D21-v.1.0

e-TextHolder detail

Name Ie-TextHoIder *

Parent

Description Pravide DSD

[use custom description [use template configuration

DPU configuration || Fault tolerance || About |

Output file name: *
dsd.tt

Flle's content:

<httpifexample openbudgets.eu/ontology/dsd/ESIF-2014-2020> a gb:DataStructureDefinition ;
rdfslabel "Data structure definition for the European Structural and Investment Funds of the years 2014-2020"@en ;
gb:component [gb:dimension obeu-dimension:budgetaryUnit ;

gb:componentAttachment gb:DataSet],

[gb:dimension obeu-dimension:budgetPhase :

gb:componentAttachment gb:DataSet),

[gb:dimension obeu-dimension:operationCharacter ;

gb:componentAttachment gb:DataSet),

[gb:dimension obeu-dimension:fiscalPeriod ;

gb:compaonentAttachment gb:DataSet],

! Save | | Cancel | Copy from template | | Save as DPU template |

Figure 7. Inserting DSD into pipeline.

Financial datasets usually contain code lists. These code lists may already be available due
to previous extraction and transformation steps' (loannidis et al. 2015), but otherwise should
be extracted at the beginning of the ETL process. The ESIF dataset contains code lists that
are not yet available from other datasets, therefore, we need to extract these code lists from
the raw ESIF dataset. The code lists in the ESIF dataset include EU funded sub-programs
along with their labels, EU subprogram objectives for functional classification, and member
states for administrative classification. The extracted code lists are then interlinked with other
code lists containing similar concepts. This interlinking, which later provides better analytics
features among the datasets, is also part of the OBEU project and available as Deliverable
D1.9 (loannidis et al. 2016). The code lists are available both from Github' or readily
available externally, such as one provided by the EU publication office'2.

To extract the ESIF code lists, separate pipelines are developed. An example pipeline for
extracting the functional classification is given in the Figure 8.

10 https://github.com/openbudgets/Code-lists
" https://github.com/openbudgets/linksets/
12 http://publications.europa.eu/mdr/authority/currency/index.html

Page 16

https://github.com/openbudgets/Code-lists
https://github.com/openbudgets/linksets/
http://publications.europa.eu/mdr/authority/currency/index.html

v henBudgets.

D21-v.1.0

ESIF
Download data

output {> table

[uv-t-tabular]

triplified Table >=Jnput

triplifiedTaple -> input

[uv-t-sparqlConstruct]

output input

[uv-t-rdfGraphMerger]

output = input
uv-t-rdfToFiles
input -> data.ttl

Figure 8. Pipeline to extract functional classification code list from ESIF dataset.

uv-t-sparqlUpdate

oupft -= input

We use similar DPUs as in Figure 3 here, but a different pipeline is created. In the
uv-t-tabular DPU, now a new mapping between the columns and RDFproperties is
described. Both SPARQL queries in uv-t-sparglConstruct and uv-t-sparglUpdate
are updated to adapt with code list extraction requirements. The resulting transformed RDF
data and the UnifiedViews pipeline for the ESIF 2014 dataset can be found on Github'.

Another example of semantic data lifting is the transformation of the Aragon Municipality
Budget dataset from CSV data format to RDF. The transformation pipeline is similar to Figure
3. However, the details on the mapping and SPARQL queries are customized, so is the code
list transformation.

3.1.2. EU Budget 2014 XML Pipeline

Another dataset that has been transformed into RDF is European Budget 2014™. The
dataset is available in XML format and hence provides another use case for transformation

8 https://github.com/openbudgets/datasets/tree/master/ESIF/2014
'4 https://open-data.europa.eu/en/data/dataset/budget-of-the-european-union-2014

Page 17

https://github.com/openbudgets/datasets/tree/master/ESIF/2014
https://open-data.europa.eu/en/data/dataset/budget-of-the-european-union-2014

Y Budgets

D21-v.1.0

pipelines. Table 2 provides required DPUs for transforming EU Budgets data from XML
format into RDF.

DPU Functionality

uv-e-filesDownload Downloads files from external source into the UnifiedViews
platform

uv-t-unzipper Uncompress files

uv-t-filesFilter Filters files based on their names

uv-t-xslt Performs XSL transformation

uv-t-filesToRdf Converts RDF files to an in-memory RDF model

uv-t-rdfGraphMerger Merges RDF graphs

uv-1l-rdfToVirtuoso Loads RDF to Virtuoso server

uv-t-rdfToFiles Serializes an RDF from graph into a file

uv-1l-filesUpload Uploads file specified URI, can also be used to upload into
local location

E-DatasetMetadata Provides metadata about the dataset

E-DistributionMetadata | Provides metadata about dataset distribution, such as URL
of SPARQL Endpoint

L-CKANOdcz Load the dataset into CKAN

Table 2. List of required DPUs to transform XML to RDF format.

The detailed pipeline for EU Budget data transformation is available in Figure 9. In this figure,
the DPU uv-t-unzipper decompresses the file downloaded from the EU Open Data
website. The decompressed files are then filtered using regular expressions specified in the
DPU uv-t-filesFilter. In the DPU uv-t-xslt, the user needs to specify the XSL
template for further processing. Later, the DPU uv-t-filesToRDF provides an ‘RDF data
unit’ from the output of the previous DPU uv-t-xslt. Meanwhile, the DSD for this
transformation is provided via URL in the DPU uv-e-filesDownload. This DSD is then
transformed into an RDF data unit using DPU uv-t-filesToRDF (as in the ESIF CSV
pipeline). The resulting RDF data and the DSD are then merged into one graph via the
uv-t-rdfGraphMerger DPU, and uploaded into Virtuoso server via the DPU
uv-1l-rdfToVirtuoso. The merged graph is serialized using the uv-t-rdfToFiles
DPU. Here the user provides the RDF serialization format and a filename for the result of the
transformation. This file is then wuploaded to a specific URL by using the
uv-1-filesUpload DPU. After this process is done, the uv-t-rdfGraphMerger DPU is

Page 18

V OpenBudgets.

D21-v.1.0

run. Metadata about the dataset and the dataset distribution are provided. This is done via
the DPUs E-DatasetMetadata and E-DistributionMetadata, respectively. The
result is then loaded into a triple store via the DPU uv-1-rdfToVirtuoso, to CKAN API
via the DPU L-CKANOdcz and into a file via the DPU uv-1-filesUpload.

3
uv-e-filesDownload uv-t-unzipper uv-t-filesFilter
put -=> in put -> inj] Filter budget data)

output -x|filesInput

uv-tfilesToRdf uvslt
Data Cube
put -> fil Vocabulary data

rdfOutpu -= input

uvlrdfToVirtuoso | uv-t-rdfGraphMerger uv-t-filesToRdf | S aiesEvenond]
t-> rdf utput -> 1t -> files

output_{= mput

3

uv-t-rdfToFiles

- ou‘tput -=tput
E-DatasetMetadata uv-l-filesUpload]

metadata -> ddtasetMetstatiata -\jnput rLuJ;fte
—

S b uv-t-rdfGraphMerger | uv-t-rdfToFiles
DistributionMetadata
hdata -> i) ut > i
outpu™> rdfInpatput -xjmetadata outpubyg> input
[uvlrdfToVirtuoso L-CKANOdcz uv-l-filesUpload
- o
e

Figure 9. Transformation of EU Budgets 2014 XML dataset into OBEU RDF.

3.2 Pipelines developed using the LinkedPipes ETL Platform

The UnifiedViews platform is quite limited when it comes to integration with other software
and Ul customization due to lack of APIs and the tight integration of its backend and frontend
parts. Based on the experience gathered from usage and support of UnifiedViews,
LinkedPipes ETL (LP-ETL) was implemented. It focuses on better integration using well
defined open APls, advanced debugging support for complex and long running pipelines and
last but not least a nicer, more user friendly interface. It is also more lightweight as it only
requires Java 8 for backend and Node.js for frontend, MySQL and Apache Tomcat are not
used.

The UnifiedViews pipeline for the ESIF dataset can be re-implemented at LinkedPipes ETL
platform, as shown in Figure 10.

Page 19

http://etl.linkedpipes.com/

v nenBudgets.

D21-v.1.0

ESIF&) (:) SPARQL update Q—DC::) SPARQL update (::) Text holder Q
i
8,
Q" Files to RDF Q
SPARQL construct Q
Q‘Eraph m@r/Q

RDF to file
input -> data.ttl

Figure 10. LinkedPipes ETL Pipeline for ESIF 2014-2012 Dataset.

While the pipeline looks and functions similar to the one developed at UnifiedViews platform,
LinkedPipes ETL offers better debugging functionality. First of all, this pipeline produces an
RDF file, and does not load it anywhere. In contrast to UnifiedViews, to get the file we had to
login to the server via SSH and search the file system for the file due to missing debug
functionality for files. In LinkedPipes ETL, this file is directly accessible. Another appealing
feature, which was not possible at the UnifiedViews platform, is graphical debugging support.
The user can see where his pipeline failed in a graphical manner, fix it, and resume from the
point of failure, as shown in Figure 11. The red DPU is the failed one and the green ones are
the ones that were executed OK. When the failed one is fixed, LinkedPipes ETL does not run
the green components again and continues to execute only the ones actually needed.

O SPARQL update O—b@ SPARQL update Q Text holder O
/' |

\‘O SPARQL construct O

SITTTe

RDF to file
input -> data.ttl

Figure 11. Visual debugging in LinkedPipes-ETL

Page 20

V henBudgets.

D21-v.1.0

Pipelines in LinkedPipes are saved as a JSON-LD RDF serialization®, which is more friendly
and easier to both produce and consume than the format used in the relational database at
the UnifiedViews platform.

The library of components is documented on the LinkedPipes ETL web' and covers all the
basic DPUs of UnifiedViews. In addition, UnifiedViews DPUs can be quite easily rewritten to
LP-ETL components, the hardest part being the rewrite of the DPU configuration dialog,
which instead of Vaadin' uses Angular Material®.

For the EU Budget 2014 datasets, the transformation pipeline for LinkedPipes is shown in
Figure 12. This pipeline is conceptually the same as the UnifiedViews pipeline shown in
Figure 9.

HTTP get () () Decompress zip archive Files filter é Text holder ()
Filter budget data

XSLT transformer Files to RDF
Data Cube Vocabulary data

D Graph merger t }

Dataset metadata () () RDFto file

‘ Virtuoso loader Files to SCP

Q‘Bismbution metadata DCAT-AP to CKAN Q

Figure 12. LinkedPipes ETL Pipeline for EU Budget 2014 Dataset.

3.3 List of Transformed Datasets
The following dataset groups have been already transformed into the RDF format.

EU Budget 2014 (XML— RDF)

ESIF 2014-2020 (CSV— RDF)

Aragon Budget (CSV— RDF)

Greek municipalities (Athens & Thessaloniki) (CSV — RDF)

The link provided also contains the pipeline files that can be loaded into the UnifiedViews
installation.

15

https://github.com/openbudgets/datasets/blob/master/ESIF/2014/pipelines/ESIF%202014-2020%20v04.j
sonld

16 http://etl.linkedpipes.com/components

7 https://vaadin.com

'8 https://material.angularjs.org

Page 21

https://github.com/openbudgets/datasets/tree/master/eu-budget/2014
https://github.com/openbudgets/datasets/tree/master/ESIF/2014
https://github.com/openbudgets/datasets/tree/master/Aragon
https://github.com/openbudgets/datasets/tree/master/greek-municipalities
https://github.com/openbudgets/datasets/blob/master/ESIF/2014/pipelines/ESIF%202014-2020%20v04.jsonld
https://github.com/openbudgets/datasets/blob/master/ESIF/2014/pipelines/ESIF%202014-2020%20v04.jsonld
http://etl.linkedpipes.com/components
https://vaadin.com/
https://material.angularjs.org/

@ OpenBudgets..

D21-v.1.0

4 The FDP Data Transformation Wizard

In Section 3, we described two data-transformation tools, which require users to manually
write out DSD (Data Structure Definition) files, code list files, and SPARQL query statements.
For non-technical domain experts, it might be inconvenient. In this section, we will illustrate a
data-transformation prototype wizard developed by our Open Knowledge'® colleagues. This
prototype provides user-friendly interfaces to transform CSV files into FDP (Fiscal Data
Package) files, by selecting or adding information to columns. The first user interface is
illustrated in Figure 13.

€ | @ devopenspending.org X | Q search B9 4+ Aa®=-00 8- =

OpenSpending 2 LOGIN/REGISTER EN~

Create a Fiscal Data Package

@ Provide your data Describe your data

STEP 1. PROVIDE YOUR DATA
No file selected or http://

€ watting for file or URL..

Figure 13. The start page of the wizard

Installation instruction of the up-to-date version can be found in the “Setting up the
development environment” section at https://github.com/openspending/openspending.

Four steps are needed to create a financial data package from a CSV file: (1) providing a
CSV dataset; (2) describing the dataset; (3) providing metadata information; and (4)
confirming and downloading the created FDP datapackage.

Step 1 Providing a CSV dataset

Users have two ways to select a CSV dataset file: either upload a file from their local
machine, or provide the URL of the file, as illustrated in Figure 13.

'® https://okfn.org/

Page 22

https://github.com/openspending/openspending
https://okfn.org/

V OpenBudgets.
D21-v.1.0

The system will automatically check whether there are any errors in the provided raw
dataset, e.g. duplicated lines or column mismatching. Users have to correct these errors
before proceeding to the next step as illustrated in Figure 14.

@ Provide your data

STEP 1. PROVIDE YOUR DATA

{ https://dl.dropboxusercontent.com/u/28303770/FFE_clean. csv‘ x

@ There are some errors. Click here to view details.

Figure 14. The system identified errors in a CSV file, and asked users to view

For the dataset in Figure 14, there is an error. If we click ‘Click here’, a detailed error
message will appear, as shown in Figure 15.

Data Validation Results

© (Untitled)

ERROR structure Duplicate Row: Row 497 duplicates the following rows which have already been seen: [496].

ROW Year Aim Geo Action Action | Project Adjudicadoa Adjudicac % cantidad TOTAL
ID por aportada por
espafia
497 2012 Militar equipment nd Improvementof 122 Providing a GTU-600 HOBART, for the supply of Europavia 12000

for Border control planes electricity in the maintenance of the model EC-135 EspafaS.A.
aircraft of the Civil Guard

Close

Figure 15. Error report appears during the data providing step

As this dataset is provided through a web-link, users have to download the dataset, correct
the errors on their local computer, and upload the error-free dataset to the system.

Step 2 Describing the dataset

After an error-free CSV dataset is uploaded, a user-friendly interface will be provided to
describe all columns of the dataset. To help users understand meanings of columns, the
system will list several data lines as samples, as shown in Figure 16.

Page 23

P Ope Budgets

D21-v.1.0
1.STEP 2. DESCRIBE YOUR DATA
Sample of data (3 rows)
COD_LOCALE PROGETTO CUP DPS_TITOLO_PROGETTO QSN_COD_PRIORITA QSN_DESCRIZIt
10ABF11J11000320007 F11J11000320007 AMMODERNAMENTOE 7 CompetitivitAf/
RAFFORZAMENTO produttivi e occt
DELLE ISTITUZIONI DEL
MERCATO DEL LAVORO
-PIANO
2009-2010-2011-
PERSONALE
10ABF11J11000330007 F11J11000330007 ATTUAZIONE DI 1 Miglioramento e
RIFORME DEI SISTEMI DI delle risorse um:

ISTRUZIONE E DI
FORMAZIONE ALFINE
DI SVILUPPARE
L'OCCUPABILITA -
PIANO 2009-2010-2011-
PERSONALE

Figure 16. The structure of an uploaded CSV file is shown with 3 rows as sample

Column information includes a description of the column, data type, and concept, as
illustrated in Figure 17.

Four data types are introduced: string, number, integer, and any and six concepts: Amount,
Date/Time, Entity, Classification, Location, and Activity.

A non-digit string can be of an instance in the concepts of Entity, Classification, Location, or
Activity. The difference between number and integer type is that number type includes
integer and float numbers. An integer value can be of an instance in the concepts of Amount,
Date/Time, Entity, Classification, Location, Activity. A non-integer number will refer to an
instance in the concepts of Amount, Entity, Classification, Location, Activity. Candidate data
types and candidate concepts of a column are inferred from the sample values of this
columns. The default candidate data types of a column are string and any, as illustrated in
Figure 18. The default candidate concepts of a column are Entity, Classification, Location,
Activity, as illustrated in Figure 19.

For the Amount column, users are required to choose the currency (for example EURO),
direction (either expenditure or revenue), and phase (proposed, approved, adjusted, or
executed), and describe the factor (default is 1).

Users must set at least an Amount and a Date / Time of two columns, to move on to Step 3.

Page 24

@ OpenBudgets..

‘D21-v.1.0

Title Cod Locale Progetto Cup Dps Titolo Progetto Qsn Cod Priorita Qsn Descrizion

Description
4 4 4 4

Data type string j string j string j integer ;I string
Concept j :I j :I

o You should map at least an Amount and a Date / Time to continue.

Figure 17. An interface to describe column information

Qsn Cod Priorita Qsn Descrizione Priorita Qsn Cod Obiettivo Generale

4 Y 4
[integer LI string v| [fnumber ;l

. any

number
any

Figure 18. Candidate data types of columns

Qsn Cod Priorita Qsn Descrizione Priorita Qsn Cod Obiettivo Generale

VY V. V.

integer j string

Amount
Date / Time Classification Entity
Entity Activity Classification

Amount Entity

| Classification L) Location Activity
Activity ' Location
Location

Figure 19. Candidate concepts are inferred from the sample value of the column

Page 25

D21-v.1.0

Step 3 Providing metadata information

At Step 3, users are required to provide meta information of the dataset, e.g., name of the
data package, location, period, as illustrated in Figure 20.

@ Provide your data @ Describe your data @ Provide metadata @ Confirm and download

STEP 3. PROVIDE METADATA

Name your Data Package *
FFE

Short description

Expense data from co-funded EU and Spain solidarity/migration spending

Continent Country City
Europe j Spain j

Period

Format: YYYY-MM-DD Format: YYYY-MM-DD

@ Congratulations! Now you can verify your Data Package and download it.

Figure 20. User interface for Metadata

Step 4 Confirming and Downloading

At Step 4, users have the chance to confirm the input and download the metadata package,
as illustrated in Figure 21. At the time of writing this deliverable, the function of publishing this
dataset is still under construction.

@ Provide your data @ Describe your data (ORI © Confirm and download

STEP 4. CONFIRM AND DOWNLOAD

Basic Information

Package Title Package Name Location
FFE ffe eu,ES
Files

ffe_clean

Column Mapping
total datetime location classification-functional

ffe_clean/ TOTAL ffe_clean/ Year ffe_clean/Geo ffe_clean / Action
ffe_clean / Action ID

activity

ffe_clean/ Project

& Download

Figure 21. Confirmation/Download of a generated FDP dataset

Page 26

Y Budgets

D21-v.1.0

5 Towards An RDF Data Transformation
Wizard

In this section, we conceptualize an RDF data transformation tool by blending the “nice” parts
of the tools described in Section 3 and and the wizard presented in Section 4. The “nice” part
of Section 3 is creating pipelines for data transformation. The un-appealing part is that users
may need to write explicitty DSDs and SPARQL queries for code list extraction and the
dataset transformation process. The “nice” part of Section 4 is the idea of using a wizard to
collect mapping and metadata information and the rest is carried out by the backend of the
wizard. Users do not need to know the technical structure. To cover the un-appealing part of
the pipeline method, we will develop a data-transformation wizard, with which sufficient data
information can be collected so that DSD creation, code list extraction, and the RDF data
transformation can be carried by the backend.

The main workflow can be described as follows: (1) load a raw dataset; (2) select and map
columns of the dataset to predefined OBEU dimensions which can be selected from a list; (3)
specify code list included or used in the dataset; (4) check and save the result of the
transformation which has been done at the backend using a generated DSD, a generated
pipeline and possibly extracted code lists based on the previous steps; and (5) go back to (2)
for the next tabular data structure in the raw dataset, or push all the results into the RDF
triple-store. As it is a wizard, it is possible at each step to go back to the earlier step, e.g. if it
is necessary to correct something in the previous step.

Page 27

V henBudgets.

D21-v.1.0

Step 1 Load a raw dataset

OpenBudgets.eu - Data Upload v)penBudgets..

Choose a dataset to upload: | Berlin2014.csv | — |

Is it budget or spending data? O Spending data

® Budget data

Dataset title | Berlin budget 2014 |

Comment for the dataset |Budget data for Berlin on state level in fiscal period 2014 ... |

Start uploading process I

Figure 22: Initial user interface for data upload

The user (a domain expert on financial data) selects a dataset to be uploaded and provides a
title for the dataset (like eu-budget-2014). In addition, it is possible to give a description on
the dataset. Because of the slight difference in the budget/spending data model, the user
specifies at the beginning whether it is budget or spending data. This way, the wizard can
better support the user in the following mapping steps. A help button will be provided to guide
the user in the decision. The initial user interface in illustrated in Figure 22.

The backend of this step is to extract data contents from the dataset. A tree-structured
dataset, e.g. XML file, may contain several data-tables. We will extract them out, and
structure them into a list. If the raw dataset is CSV dataset, this list will have only one
data-table. For each data-table in the list, we can re-use tools of the prototype wizard for
structural checking. If passed, a DSD-specific namespace will be automatically generated
based on the given title and we can move on the next step, as shown in Figure 23.

Page 28

v henBudgets.

D21-v.1.0

OpenBudgets.eu - Data Upload v 100 "'Budgets,f

1. Attribute selection

Select and map attributes:

E Budgetary Unit

Berlinzom.csv @ Fiscal Period

D Functional Classification
Year | depMo | Department | Objective | Description | Title | Amount

D Administrative Classification
2014 u

! [] Amount
2018 [] currency
2014 -
I Administrative Classification

[] Giveninacolumn:

Choose column | — |

[[] usesacode list

7] [[] 1sattached to the dataset:

| Value

| Continue

Figure 23: Concept of a wizard collection mapping information.

Step 2 Map Columns to OBEU Components

In this step, a graphical interface will be prompted to collect information for each column of
the current CSV dataset. Possible component properties, i.e., dimensions, measures, and
attributes, will be listed, so that the user can select easily. For a budget dataset, the
mandatory components are budgetary unit, fiscal period, amount, and currency. For a
spending dataset, the mandatory components are organization, operation character, date,
amount, currency (attribute). Information in this step shall be sufficient to generate
component properties of the corresponding DSD.

The user can choose which columns (components) will form the Data Structure Definition. In
case that a CSV dataset has more than one DSD, users are able to specify each of them.

The usage of the wizard should be simple, straightforward and self-explanatory. Especially,
the user should be able to proceed without any knowledge on the OBEU data format.
Naming policy will be used for generation OBEU data format.

In this step, we shall collect all necessary information for automatically generating data
structure definitions (gb:DataStructureDefinition) and the component properties as
an RDF file in Turtle serialization (xxx-components.ttl). Naming policy will be created,

Page 29

& OpenBudgets

D21-v.1.0

so that user friendly terms can be automatically translated into the machine readable codes
in the RDF formats.

Step 3 Map to existing code lists

OpenBudgets.eu - Data Upload V5 JpenBudgets..

2. Codelist specification

The dataset contains codelists for the following attributes.

Berlin2014.csv Please specify them here:
Year |depNe | Department | Objective | Title | Description | Amount Administrative Classification
=
4914 Functional Classification
2014
2014
[] codelist specified in a separate resource
I | Select resource |
E Codelists to be extracted from the dataset
» Code: |Selectmlumn | - |
« Label: I Select column | — |
SR =
- + Description: |Sele(t column | — |

Figure 24. Interface for Code List Extraction

This step will continue the information collection with a focus on code lists, so that these can
be generated automatically. A user interface will be prompted for those dimensions that
contain code lists as specified in the previous step, as illustrated in Figure 24. Under certain
conditions, we can use a LinkedPipes ETL pipeline to extract a code list, for example, the
functional classification in the ESIF dataset, where the codes are given with labels and
comments in different columns. Also users shall be able to mark explicitly if the code lists
contain narrower/broader relations among columns.

Some columns (dimensions) have predefined data contents. For example, operation
character dimension has some predefined data contents: expenditure, financing, and
revenue. If a column is operation character dimension, users shall be mark its data as one of
the expenditure, financing, and revenue.

Page 30

v nenBudgets.

D21-v.1.0

At the end of the mapping process, the user is presented a summary and can check the
identified components. An example is given in Figure 25.

Identified
components:

OpenBudgets.eu - Data Upload

4. Checking and Upload

Administrative Administrative Functional

s

Biac

b

Functional

v Classi

Code

Label

Code

Label

Amount

Year

depho

Department

Objective

Description

Title

Amount

2014

2014

2014

berlin-budget-2014 (Berlin2014.csv, budget data)

1Budgets-

... having data set scape:

I

Selected and specified components...

o g
A e

... having observation scope:

B Functional Classification

E Administrative Classification

EAmnunt

Figure 25. Mapping Summary for Checking and Confirmation

See details

Seedetails

Seedetails

The information provided so far shall be complete for automatically generate the whole DSD
file (xxx-dsd. tt1l), which includes metadata properties (xxx-metadata.ttl), code lists
(xxx-codelists.ttl), and component properties (xxx-components.ttl). Based on
these, the transformation pipeline including SPARQL construct/update statement will be
automatically generated and executed to transform the current CSV dataset into RDF format.

Step 4 Check and Save the Result

The result will be presented to the users, to check whether the result is correct. If no errors

are found, the result will be saved locally.

If the raw dataset is a tree-structured, it may contain several tabular-structured datasets, the
wizard will move to Step 2 for the next tabular-structured dataset. Otherwise, move on to

Step 5.

Step 5 Push to RDF Triple Store

All locally saved results are pushed into the RDF Triple store.

Page 31

P Ope Budgets

D21-v.1.0

6 Conclusion and Future Work

This deliverable mainly summarizes the experimental work on developing data
transformation tools, in particular pipelines development using UnifiedViews and
LinkedPipes ETL, and testing the data transformation wizard. Based on these efforts, we
conceptualized a wizard for data transformation, which aims at providing user-friendly
interfaces to transform tabular-structured datasets (e.g., CSV) and tree-structured (e.g., XML)
datasets into RDF format. This work is under construction.

/ References

e Klimek J., KuCera J., Mynarz J., Sedmihradska L., Zbranek J. (2015a):
OpenBudgets.eu - Deliverable D1.2 - Design of data structure definition for public
budget data, http://openbudgets.eu/assets/deliverables/D1.2.pdf

e Klimek J., KuCera J., Mynarz J., Sedmihradska L., Zbranek J. (2015b):

OpenBudgets.eu - Deliverable D1.3 - Design of data structure definition for public

spending data, http://openbudgets.eu/assets/deliverables/D1.3.pdf

e Dudas M., Horakova L., Klimek J., Ku€era J., Mynarz J., Sedmihradska L., Zbranek
J., Dong T., (2015): OpenBudgets.eu - Deliverable 1.4 - User Documentation,
http://openbudgets.eu/assets/deliverables/D1.4.pdf

e loannidis, L., Philippides, P.-M., Bratsas, C., Koupidis, K. (2015): OpenBudgets.eu —
Deliverable D1.6 — Survey of code lists for the data model's coded dimensions,

http://openbudgets.eu/assets/deliverables/D1.6.pdf
e J|oanidis L., Klimek J., Musyaffa F., Mynarz J., Sedmihradska J., Zbranek J., (2016):
OpenBudgets.eu - Deliverable 1.4 - Linking Code Lists to External Datasets,

http://openbudgets.eu/assets/deliverables/D1.9.pdf

Page 32

https://openbudgets.atlassian.net/browse/OB-13
http://openbudgets.eu/assets/deliverables/D1.2.pdf
https://openbudgets.atlassian.net/browse/OB-14
http://openbudgets.eu/assets/deliverables/D1.3.pdf
http://openbudgets.eu/assets/deliverables/D1.4.pdf
https://openbudgets.atlassian.net/browse/OB-17
http://openbudgets.eu/assets/deliverables/D1.6.pdf
http://openbudgets.eu/assets/deliverables/D1.9.pdf

