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Executive Summary

In this deliverable we present the requirements for statistical analytics and data mining in the
OpenBudgets.eu (OBEU) project. We start by elaborating the methodology used to collect the
data mining and statistical analytics requirements. After identifying sources of collected data
mining and analytics needs in previous OBEU deliverables, these needs are summarized. We
continue with mapping those needs onto corresponding data mining and analytics tasks. A
discussion regarding appropriate algorithms for the identified tasks follows. Based on the
collected tasks, we describe related tools. Finally, we formulate the list of requirements for data
mining and statistical analytics along with a priority for each requirement.
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Abbreviations and Acronyms

CSsVv Comma-Separated Values

DCV Data Cube Vocabulary

RDF Resource Description Framework
OBEU OpenBudgets.eu
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1 Introduction

Apart from integrating budget and spending data on European, national, regional and local
level into one single platform and a uniform data model, the possibility to analyze and visualize
this data is a key component of OBEU.

There are many open data platforms collecting budget and spending data on various regions
and level like OpenCoesione! in Italy or OffenerHaushalt? in Germany. Some of them also
provide nice visualizations (e.g. OpenCoesione and WhereDoesMyMoneyGo?® in UK) but often
lack of analytics and more advanced visualizations to make the contained data better
understandable and digestible.

In the OBEU project we are going to address the needs of our stakeholders and enhance our
open data platform with comparative analysis and data mining functionalities.

This deliverable is the first of the corresponding work package task T2.3 in the project. It
summarizes the needs analysis of our use case partners related to data mining and analytics,
specifies according tasks, discusses related tools and algorithms, and finally formulates
requirements.

The analytics on the OBEU platform will be twofold: there will be advanced analytics tools for
experts as well as an easy-to-use graphical user interface to reduce the barrier for non-experts
to engage in budget and spending data. To this end, we will do both integrate and adapt
existing tools as well as develop new tools in line with the users’ needs.

The remainder of the deliverable is structured as follows: After a preliminary section in Section
2, we first summarize the data mining and analytics needs collected in cooperation with our
use case partners, transform them into corresponding tasks, and discuss appropriate
algorithms in Section 3. Suitable tools for these tasks are discussed in Sections 4 in order to
finally define the requirements for statistical analytics and data mining in Section 5. We close
with a conclusion in Section 6.

2 Preliminaries

In this preliminary section, we briefly explain the OBEU data model in Section 2.1 which serves
as input format for the data mining and analytics tasks. In Section 2.2, we introduce the
methodology used in this deliverable for obtaining and formulating the requirements.

2.1 Semantic Model

On the OBEU platform, the data sets will be kept in the RDF data model defined in WP1.
This data model for public budget and spending data is documented in deliverable D1.4
(Dudas et al. [2015]). It is based on the Data Cube Vocabulary* and provides several
predefined dimensions for modeling budget and spending data.

Since the majority of data mining algorithms and statistic tools works on tabular-structured
data, the RDF data sets cannot directly serve as input. A pre-processing step is necessary
to transform or propositionalize the data into an appropriate tabular format like CSV (cf.
requirement (R18)). This transformation is in most cases realizable with SPARQL
SELECT-queries. Further details can be found in the corresponding OBEU deliverable
D2.2 (Klimek et al. [2016]) on data optimisation, enrichment, and preparation for analysis.

1 http://www.opencoesione.gov.it/

2 http://offenerhaushalt.de/

3 http://wheredoesmymoneygo.org/

4 http://www.w3.0rg/TR/vocab-data-cube/
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2.2 Methodology

For obtaining and formulating requirements for data mining and statistical analytics in this
deliverable, we follow the methodology depicted in Figure 1.

Transform needs
into appropriate
tasks

Identify sources of
data mining and
analytics needs

Summarize
collected needs

Formulate Discuss related
requirements and tools and
assign prioriteis algorithms

Group and classify
identified tasks

Figure 1: Diagram of the Chosen Methodology

After the sources of collected data mining and analytics needs have been identified in
Section 3.1, those needs related to data mining and analytics are summarized in Section
3.2. Then the needs are transformed into corresponding data mining and analytics tasks in
Section 3.3, which are grouped together and classified in Section 3.4. In Section 3.5, a
discussion of the identified tasks and appropriate tools and algorithms follows. A deeper
look into software environments for data mining and analytics is given in Section 4. Finally,
the requirements for data mining and statistical analytics are formulated in Section 5 based
on the previous discussions.

Each requirement is assigned a priority indicating the importance for the project. The
priorities are based on the number of related needs (cf. Section 3.2) and feedback received
from project partners while discussing the identified data mining and analytics tasks (cf.
Sections 3.3 - 3.4). We chose three possible priorities: high, medium and low.

3 Data Mining and Analytics Needs and
Tasks

For formulating data mining and analytics needs and tasks in this section, we follow the
methodology introduced in Section 2.2. We use the following naming convention throughout
this deliverable: data mining needs are numbered as (Nxx), data mining tasks as (Txx), and
requirements as (Rxx).

3.1 Sources of Collected Data Mining and Analytics Needs
Data Mining needs have been collected in various steps during the project.

A first definition of the OBEU functionality including data mining and analytics tasks was
specified in the required functionality analysis report (D4.2, Gokgoz et al. [2015]) at the
very beginning of the project.

In the meantime, our three pilot partners collected requirements for the whole OBEU
platform along with their stakeholders. We examined their findings documented in
deliverables D5.1 (Kayser-Bril et al. [2015]), D6.2 (Aiossa et al., [2016]), and D7.1 (Cabo
Calderon et al. [2016]) for data mining needs and summarized them in Sections 3.2.2 to
3.2.4.
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Another input for this deliverable is the outcome of the stakeholder workshop that was held
at our plenary in November/December 2015. Deliverable D8.3 (Alberts et al. [2016])
provides an exhaustive summary of other open data platforms and projects that have been
presented by the participants, and the outcome of a gap analysis and user stories sessions.

Sources of Data Mining Needs (Summary):

o Deliverable 4.2 - Analysis of the required functionality of OpenBudgets.eu
e Requirements analysis of the pilot partners (WP5-WP7)

o Deliverable D5.1 - User Requirement Reports - First Cycle

o Deliverable D6.2 - Needs Analysis Report

o Deliverable D7.1 - Assessment Report
e Deliverable D8.3 - Stakeholder identification and outreach plan

3.2 Collected Data Mining and Analytics Needs

In this section, we itemize all needs related to data mining and analytics collected in the
sources identified above. Each of the following sections copes with one source identified
in the previous section.

3.2.1 Analysis of the required functionality of OpenBudgets.eu
(D4.2)

At the project’s kick-off meeting, functional requirements for the platform have been
collected. In total, 66 functional and 13 non-functional requirements have been
identified and reported in the deliverable. The requirements are consecutively
numbered as Fxx (functional requirements) and Nxx (non-functional requirements), and
listed in a table separately for each feature (D4.2, Section 3.1). Table 1 shows the
required functionalities for “Analytics” together with the respective number and a short
description.

Note that the following requirements have evolved during the project and that some
have gained a higher priority than others in the user assessment process.

Need | D4.2 No. | Description

(NO1) F036 Filtering commensurable objects

Aggregate analytics can only operate on a pool of
commensurable objects (i.e. objects with comparable “size”, in
whatever terms). The platform should be able to serve data using
appropriate filters, e.g. budgets of municipalities with similar
population size.

(NO02) F037 Version tracking of budgets
Analysis of evolution of budgets throughout its preparation phase.

(NO3) F038 Indexing data with respect to tabular versus graph structures
For some types of data, mining from tabular structures (merely
enriched by further features) is sufficient. On the other hand,
some “natively graph-based” data might rather work on graph
structures. Each kind of structures would benefit from specific
optimized indexing scheme, to assure real-time response.

(NO4) FO039 Outlier detection

Reveal categories that are used disproportionately. Outlier
detection can find misclassifications, where lot of spending is non-
transparently classified.
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(NO5) F040 Extrapolations on data
Ability to outline trends for future budget allocations.

(NO6) FO41 Aggregation by time interval
Ability to aggregate (e.g. sum, average) amounts over a user-
defined period of time (e.g. quarter).

(NO7) F042 Temporal trend of the difference between planned and actual
spending

How does the difference between planned and actual expenditure
differ over time? If it gets smaller, does it imply that the public body
improved its estimates?

Table 1: Data Mining and Analytics Needs Collected in D4.2

3.2.2 User Requirements Reports — First Cycle (D5.1)

The first user requirements report in the field of journalism indicates that journalists in
general prefer raw data to preprocessed data and that publicly available open data is
not exclusive enough to lead to a good story which is — even in data journalism — a
central point. Nevertheless, budget data represents a slightly different case. Budget
and spending data is rather complex, hard to understand and digest. So data mining
tools on the OBEU platform might assist non-technical journalists to perform their
analytics. For a better acceptance among journalists, these analytics performed on the
data have to be transparent, i.e. the methods, algorithms and all parameters have to
be easily available on request which results in the first requirement:

Requirement (R0O1): Algorithms have to be explained on the platform, all parameters
have to be transparent if asked.

Table 2 summarizes the data mining and analytics needs collected in D5.1. (N10) and
(N11) address gaps G5.11 and G5.13 identified in the gap analysis® which could
possibly be helped by data mining and machine learning.

Need | Description

(NO08) | Perform aggregations and simple statistics for a better understanding of the
data and to support journalist unexperienced in budgeting to find the
demanded values.

(N09) | Add features for experienced users, as data journalists usually have a high
understanding of technical and mathematical issues.

(N10) | Detect in-kind spending and gifts which are not explicitly present in the data.

(N11) | Incorporate accounting legislation into the analysis.

(N12) | Perform comparisons measuring how the data has changed when a data set
has been updated.

Table 2: Data Mining and Analytics Needs Collected in D5.1

5 D5.1, Section 2. GX.XX refers to the gap number provided in the deliverable.
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3.2.3 Needs Analysis Report (D6.2)

The needs analysis report in WP6 is based on a Members of the European Parliament
survey evaluation and identifies a clear need to process and analyze raw data in the
OBEU platform. In particular it raises the following needs:

Need | Description

(N13) | Analyze larger trends over time and in different funding areas.

(N14) | Identify both good and bad examples of financial management.

(N15) | Pay special focus on analyzing the spending and management of EU budget
funds.

(N16) | Identify systematic problems of project implementation in different funds and
programmes, rather than in-depth engagement with individual projects.

(N17) | Consider fiscal indicators like error, performance and absorption rates.

(N18) | Perform comparative analysis of certain budget and expenditure areas
through the use of timelines; geographically; and by sector.

(N19) | Complement the raw budget data with other sources such as annual audit or
activity reports.

Table 3: Data Mining and Analytics Needs Collected in D6.2

3.2.4 Assessment Report (D7.1)

The assessment report for the participatory budget tool on the OBEU project reveals
only a limited need for statistical analytics and data mining going beyond visualizations.
Most user needs collected so far are related to information requests, e.g. a search
engine and filtering tools. However, the following two needs fit the scope of this
deliverable:

Need | Description

(N20) | Comparisons of previous years’ budgets with the current one.

(N21) | Provide context information, e.g. information about authorities, departments
and areas involved in proposals.

Table 4: Data Mining and Analytics Needs Collected in D7.1

3.2.5 Stakeholder identification and outreach plan (D8.3)

At the first stakeholder workshop that was held at the plenary on 30.11. — 1.12.2015
several participants from the fields of journalism, civil society and (budget) transparency
gave presentations of their work. The functionality of these open budget and spending
data portals and anti-corruption campaigns inspired us to target the integration of
similar tools into the OBEU platform (cf. (N22) - (N29)).

In addition, the gap analysis and the user stories session revealed requirements
including those for analytics to overcome the identified gaps and to address the needs
of the different user groups (cf. (N30) - (N35)). Again, a clear need for good analytics
has been emphasized.



Y Budgets

Table 5 summarizes the needs reported in D8.3.

Need | Description

(N22) | Comparative analysis performed by Openspending.nl®

The Openspending.nl project provides a way to compare budget and
spending data from different Dutch local (e.g. districtual/municipal/provincial)
administrations. The project’s main features are comparing the budgets of
two local administrations, decomposing the budget into several functional
classifications and creating visualizations.

(N23) | Aggregations performed by The Price of the State’

The Price of the State project provides information on how much the Slovak
public sector spends and collects money in various years. The platform
provides comparisons between budgets, aggregations, visualizations,
statistics, and a simulation interface where users can create their own
national budget.

(N24) | Identifying fishy relations and red flags using network analysis presented by
Adriana Homolova and Belia Heilbron

(N25) | Red Flags® for tenders and contracts indicating corruption, mistakes, etc.

(N26) | Detection of politicians involved in receiving subsidies performed by Open
Data Albania®

(N27) | Incorporating information of the budget process, information on politicians,
public procurement, and private companies receiving money from the state

(N28) | Detection of corruption as a general goal

(N29) | Follow the state’s money flows all the way down to transaction data and then
guestioning who was receiving the money and if this happened in a proper
manner.

(N30) | Include actual statistics

(N31) | Provide context to budget and spending data

(N32) | Compare the same budget line across countries and cities

(N33) | Detect council members tied to companies winning tenders

(N34) | Implement notifications on specific changes in certain data sets, monitoring

(N35) | Address questions like “How is the money really used?” and “How do | profit
from my salary taxes?”

Table 5: Data Mining and Analytics Needs Collected in D8.3

6 http://openspending.nl/

7 http://www.priceofthestate.org/
8 http://www.redflags.eu/?lang=en
9 http://open.data.al/en
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3.2.6 Additional Needs

The following additional needs have been raised during discussions in project
meetings:

Need | Description

(N36) | As a data-driven use case the OBEU team agreed to address the question
whether we can track the EU money through the different administration
levels (EU/national/regional/local) down to the actual beneficiaries.

(N37) | Incorporate key performance indicators for e.g. EU-funded projects in the
analysis

Table 6: Additional Data Mining and Analytics Needs

3.3 Data Mining and Analytics Tasks

One of the main tasks of this deliverable is to translate the data mining and analytics needs
collected in the previous section into corresponding data mining and analytics tasks. Then
we can choose and adapt existing, or develop new tools for performing these task. Details
on available tools and techniques are given in Section 4.

We now formulate the data mining and analytics tasks according to the 37 data mining and
analytics needs that were collected and summarized in Section 3.2.

Some of the collected analytical needs can be already addressed by advanced
visualization or rather refer to data pre-processing. The latter are directly formulated as
requirements. A summary of the identified data mining and analytics tasks together with
their category is given in Section 3.4.

Table 7 gives the transformation of the identified data mining and analytics needs into
corresponding data mining and analytics tasks.
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3.4 Summary of Data Mining and Analytics Tasks

In this section we summarize the identified analytics and data mining and analytics tasks
of Section 3.3. Many needs and tasks collected from different sources overlap. Table 8
groups common tasks together and classifies them, whether they are data mining tasks or
tasks that can be addressed by statistics and visualizations.

Data Mining and Analytics Corresponding

Task Category Tasks Source (Deliverable)
Clustering, similarity learning Data Mining (T01) D4.2
Rule/pattern mining Data Mining g%g (T13), (T24), D6.2, D8.3

(TO3), (T12), (T14),

(T17). (T28) D4.2, D6.2, D8.3

Outlier/anomaly detection Data Mining

'Pattern matching 'Data Mining '(T08) 'D5.1
Graph/network analysis Data Mining (T22), (T25), (T27) D8.3
Descriptive statistics Statistics (TO7), (T16), (T30) D5.1, D6.2

(T02), (T09), (T18),

Comparative analysis \S/;[salzfi"z::"[ion (T19), (T20), (T26), g‘;’i Bgé D6.2,
(T29), (T30) -1 De.
Time series analysis, Sf"‘ta 'I\.’“”'T‘g’ (T02), (T04), (TO6). 1y » b
predictions SE[SltJ.at'.Zat'on’ (T10), (T16) e
atistics ’
Aggregation Statistics, g5y (107, (T21) D4.2, D5.1, D8.3

Visualization

Calculation of fiscal
indicators, Algorithmics (T15), (T23) D6.2, D8.3
tagging of red flags

Table 8: Summary of Collected Data Mining and Analytics Tasks

3.5 Discussion of Identified Data Mining and Analytics Tasks

In this section we provide an overview of the data mining and analytics tasks that will be
performed on the OBEU platform according to the identified tasks in Section 3.4. As we
focus in this deliverable and the corresponding task T2.3 in the OBEU project on data
mining and statistical analytics, we take a deeper look on the tasks identified as such.

Each of the following subsections deals with one task. After a definition, relevant algorithms
are discussed and finally requirements are formulated.

Aggregation is to be included as feature in the other tasks and as part of the visualization
tools. Therefore we will not have a separate section on aggregation. Similar, the calculation
of red flags and fiscal indicators will be handled using an appropriate algorithms and is not
discussed separately.

A summary of the requirements is finally given in Section 5.

3.5.1 Similarity Learning

Similarity learning will be used in OBEU to find comparable items. It serves as a pre-
processing step for the other data mining and analytics tasks based on comparisons.
Therefore it is assigned a high priority in Section 5.

The goal of similarity learning is to introduce or learn a similarity function on a set of
item that measures how similar two items are. Metric learning is a closely related field,
where the similarity or distance function has to be a metric.
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In OBEU, similarity learning will be applied to find comparable items among e.g.
geospatial objects or persons/organizations (cf. (T01)). A critical issue in similarity
learning is the number of dimensions. Learning a metric for each dimension separately
and combining the resulting functions, or projecting the data into lower dimensional
spaces is only suitable in some cases. A recent approach for learning such high-
dimensional metrics is COMET (Atzmon et al. [2015]).

Most similarity learning approaches use a regularizer to limit the model complexity and
thus smooth the learned function and avoid overfitting.

3.5.2 Rule/Pattern Mining

This task refers to finding statistically relevant patterns in the data, in other words data
that appear in a dataset frequently. It compromises tasks like association rule mining,
frequent/infrequent itemset mining and rule-based classifications. The key term in
these methods is frequent itemset. An itemset (a set of items) is frequent if the relative
support of the specific itemset satisfies the corresponding minimal support count
threshold specified by the user. The support count is the number of transactions that
contains the particular itemset.

Frequent pattern mining is generally considered to be a very difficult problem, but now
there are many algorithms solving this high complexity by a smart pruning of a state
space. Among the best known algorithms may be mentioned variations of:

e Apriori (breadth-first search, out-of-memory problem, Agrawal et al. [1996])

e FP-Growth (usually faster than Apriori but with more complex data structures,
Zaki et al. [1997])

e Eclat (it uses a vertical data storage that does not consume so much memory
such as Apriori or FP-Growth, Han et al. [2000])

e LCM (designed for closed itemset mining and it is considered one of the fastest
algorithm for this purpose, Uno et al. [2003])

These methods have been implemented in lots of well-known mining tools like
RapidMiner, Weka and EasyMiner. Besides, there are many existing libraries for
frequent pattern mining in various environments like R, Apache Spark, Apache Mahout,
Python and other. There are also several parallel solutions for the mentioned algorithms
to process big data sets.

3.5.3 Outlier/Anomaly Detection

Anomaly detection refers to the problem of finding patterns in data that do not conform
to the expected normal behavior (Chandola et al. [2009]).

Outlier detection and pattern mining are two sides of the same coin in the sense that
outliers can be viewed as infrequent patterns or as data that does not fit into the
extracted patterns.

There are different approaches basically all following the same idea to define some
kind of model (e.g. a statistical distribution or a clustering) representing normal behavior
and declare any observation in the data that does not fit the model as an anomaly or
outlier.

The following list presents a subset of relevant approaches and algorithms for the
outlier and anomaly detection that can be used in OBEU. They differ in the
requirements on input data including labelled instances for supervised learning, data
types for statistical approaches or number of attributes in univariate or multivariate
approaches. Several implementations are available for R, Python and RapidMiner.
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e Statistical tests:
Basic statistical tests for testing hypothesis and distributions can be used to
identify outliers. The required inputs are mostly numeric values. Implementations
for univariate and multivariate outliers are available for R.

e Classification based approaches:
These are supervised techniques that require labelled instances for training
classifiers. An example implementation in Python is based on one-class support
vector machines. R provides random forest outlier detection and a rule-based
approach in this category.

e Nearest neighbor based approaches:
These techniques are mostly unsupervised without any requirements on labelled
data. The main representative is Local Outlier Factor (LOF) which uses the
concept of a local density and measures a local deviation of a point in contrast to
its nearest neighbors.

e Clustering based approaches:
Algorithms in this category are K-Means with simultaneous outlier detection and
the calculation of isolation forests, an unsupervised technique that computes a
score for each instance reflecting how easily it can be isolated from others.

e Association rules and frequent itemsets:
As mentioned before, anomaly can be considered as instances not matching any
pattern learned as normal or regular behavior. These approaches can be either
supervised or unsupervised techniques.

The above mentioned techniques can be combined to get better results.

3.5.4 Clustering

Clustering is the task of dividing a given data sample into groups of similar items, the
so called clusters. Typically, clustering methods are iterative processes of defining
clusters and assigning the item to these clusters. Also the clustering itself is manifold.
The clusters can be hard or soft, disjoint or overlapping, include or exclude possible
outliers. Popular algorithms among more than 100 published clustering algorithms are:

e k-means (a partitioning approach assigning each item to the nearest of k means,
MacQueen [1967])

e Hierarchical clustering (based on Johnson [1967])

e DBSCAN (a density-based approach assigning high density regions of arbitrary
shape to the same cluster, Ester et al. [1996])

There is no objectively best clustering algorithm. When dealing with a particular
problem, the most appropriate clustering algorithm needs to be chosen experimentally,
unless there is a mathematical reason to prefer one cluster model over another. There
are algorithms that provide a proper criteria for determining the number of clusters
(among all combinations of numbers of clusters) for a selected clustering method in
order to use the best clustering scheme.

3.5.5 Graph/Network Analysis

Graph and network analysis refers to the task of examining the structure of graphs in
general and networks in specific. Extensive research has been conducted in the past
on network analysis and several industry applications have been developed in various
domains, e.g. social networks, logistical networks, the World Wide Web, biological
networks, etc.
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Common procedures and algorithms for network analysis involve (Barabasi [2016]),
e.g.:
e Manipulation of directed or undirected graphs
e Statistical measurements: degree/property histogram, combined degree/property
histogram, vertex-vertex correlations, assortativity, average shortest path, etc.
e Graph-theoretical algorithms: such as graph isomorphism, minimum spanning
tree, connected components, dominator tree, maximum flow, etc.
e Centrality measures
e Clustering coefficients, network motif statistics and community structure detection
e Modelling of random graphs, with arbitrary degree distribution and correlations

Popular tools for network analysis include for instance the GUI-based Gephi'!, Pajek??,
NodeXL®® and UCINet', or the developers-oriented NetworkX!®, Graph-tool** and
igraph?’ libraries. For example, tools such as the open source Java-based Gephi
Platform, are suitable for both exploring small to medium size graphs, and exporting
good quality images. While these tools do provide an implementation of algorithms for
graph metrics and clustering, these steps are normally batch processed using libraries
such as NetworkX (Python-based) or the igraph library (supporting R, Python and
C/C++).

A recent paper by Lee et al. [2016] highlights also the importance of the RDF query
language SPARQL for holistic in-situ graph analysis.

3.5.6 Pattern Matching

Pattern matching is the task of finding a given pattern in the data. The pattern can be
of various formats and is either already part of the input or learned in a separate task.

There are several algorithms for string and graph pattern matching (e.g. the Boyer-
Moore string search algorithm, Boyer, Moore [1977]). For structured RDF data,
SPARQL queries are most appropriate to find predefined patterns in the data as
SPARQL is based on graph pattern matching (cf. Section 4.5).

3.5.7 Descriptive Statistics

Descriptive statistics are used to describe the basic features of a dataset. They simplify
large amounts of data through simple summaries of the available data. These
summaries form the basis of every quantitative analysis.

When analyzing one variable there are three main characteristics that we usually look
at: a.) the distribution, b.) the central tendency and c.) the dispersion.

a.) The distribution:
The distribution is a summary of the frequency (counts of occurrences) of
individual values or ranges of values for a selected variable. The distribution can
be represented as a table, as a histogram or as a bar chart depending on the
nature of the studied variable.

b.) The central tendency:

11 https://gephi.org/

12 http://mrvar.fdv.uni-lj.si/pajek/

13 http://nodexl.codeplex.com/

14 https://sites.google.com/site/ucinetsoftware/home
15 https://networkx.github.io/

16 http://graph-tool.skewed.de/

17 http://igraph.sourceforge.net/
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The central tendency is a central value for a distribution of values. The arithmetic

mean, median and mode are the most common measures of central tendency.
c.) The dispersion:

Dispersion measures the spread of the values around the central tendency value.

The most common measures of statistical dispersion are the variance, standard

deviation, the range and the interquartile range.

Other important descriptors of data are skewness and kurtosis that are measures of
the shape of the distribution.

3.5.8 Comparative Analysis

Comparative analysis is common technique in statistics. It refers to the task of
guantitatively and qualitatively comparing two or more objects with each other. These
objects can be for example the unemployment rates for two countries or the budgets of
two municipalities. Descriptive statistics and visualizations are the basis for
comparative analysis. Possible axis for comparative analysis are e.g. temporal,
geographical, and by sector. Therefore comparative analysis is related but not limited
to time series analysis. Regression and correlation matrices are terms in comparative
analysis.

3.5.9 Time Series Analysis

Time series analysis includes methods for analyzing time series data in order to extract
meaningful statistics and other characteristics of the input data. The main assumption
in analyzing time series is that the successive values of a variable represent
consecutive measurements of equally spaced time intervals. There are two main goals
in time series analysis: a.) identify an internal structure that we have to consider, such
as autocorrelation, trend and seasonal variation and b.) forecast future values of the
desired variable/measure based on previously observed values.

Regression analysis is often employed in such a way as to test theories that the current
values of one or more independent time series affect the current value of another time
series. An observed time series can be decomposed into three components: the trend
(long term direction), the seasonal (systematic movements) and the irregular (short
term fluctuations).

There are various methods in order to deal with these three components that affect the
behavior of the data and make predictions a critical issue.

A popular method for forecasting the behavior of a time series is the ARIMA
(autoregressive integrated moving average) model. It has three parameters p, d and g
indicating the order of the autoregressive model, the degree of differencing, and the
order of the moving-average model. Before fitting an ARIMA model, the time series
have to be stationary. This can be checked through autocorrelation and partial
autocorrelation function plots and with multiple tests (e.g. the Ljung-Box test, the
Augmented Dickey-Fuller (ADF) t-statistic test, and the Kwiatkowski-Phillips-Schmidt-
Shin (KPSS) test).

Other approaches for predictions are regression analysis methods, regression trees,
regression neural networks and support vector machines.

Some algorithms have assumptions on the input data (e.g. normality of the data) which
have to be taken into account in order to get valid predictions. If the data does not
satisfy the assumptions, transformation techniques have to be applied or a different
algorithms has to be used.
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4 Tools

In this section, we take a closer look at already existing tools and software environments that
can be adapted and integrated into the OBEU platform to perform the data mining and analytics
tasks identified and specified in Section 3.

There exist many tools providing implementations of the most popular algorithms performing
e.g. clustering, regression, rule mining and outlier detection.

RapidMiner and WEKA are open-source examples of general data mining software
environments which could be integrated with all their functionality into the OBEU platform for
data mining tasks, as well as R for statistical analytics.

Each of the following subsections addresses one tool or programming language and discusses
included features and algorithms.

4.1 RapidMiner

RapidMiner!® is a software platform supporting all steps of the data mining process
including data loading, transforming, pre-processing, predictive analytics, statistical
modeling, visualization, evaluation and validation. It is written in Java and was first released
in 2006 (under the former name YALE). A free basic version is available under the Affero
General Public Licence?®.

RapidMiner accepts various input formats, including CSV, XML and XLS, and also allows
for a direct import from a SPARQL endpoint. It is integrated with WEKA and R, easily
extendable and already provides many extensions.

Algorithms included (selection): Naive Bayes, Trees, Rule Induction, Subgroup Discovery,
Neuronal Nets, Regression, Support Vector Machines, Clustering, Association Rules,
Outlier Detection, Correlation Matrix, Mutual Information Matrix, k-NN, k-means,
Gaussians, Weightings, Feature Generation, Feature Selection.

4.2 WEKA

WEKA? (Waikato Environment for Knowledge Analysis) is an open source machine
learning software which has been developed since 1993. It is written in Java and available
under the GNU General Public License?!. WEKA supports various steps of the data mining
process like preprocessing, feature selection, analysis and visualization.

Algorithms included (selection): Clustering, Classification, Regression, Association Rules.

4.3 R

R?2 is a programming language and software environment for statistical analytics and data
mining. It has been developed since 1993 and is available under the GNU General Public
License?!. Several formats for data import are supported, e.g. tabular formats like CSV,
and also Turtle and JSON-LD for RDF data. R is highly extensible and already provides
many packages.

Features included (selection): Statistics, Linear and Nonlinear Modeling, Classification,
Clustering, Regression, Time-series Analysis.

18 https://rapidminer.com/

19 http://www.gnu.org/licenses/agpl-3.0.en.html
20 http://www.cs.waikato.ac.nz/ml/weka/

21 http://www.gnu.org/licenses/gpl-3.0.en.html
22 https://www.r-project.org/
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4.4 Python

Python?® is a programming language and environment that is widely accepted by the
community as a tool for performing data science and data mining tasks. The language itself
is developed under an open-source licence. There are several existing modules and
libraries to perform such tasks, namely: numpy?* as a fundamental package for scientific
computing, scipy?® as an ecosystem, matplotlib®® as a plotting library, pandas?’ for data
structures and data analysis tools and scikit-learn?® as tools for data mining and data
analysis. They all are available under an open source licence. There are also other existing
libraries and modules that can be imported and extend the core functionality.

Python can generally accept any format of input data including tabular formats (e.g. CSV)
or even import from SPARQL endpoint.

Algorithms included (selection): Classification, Regression, Clustering, Dimensionality
reduction, Model selection, Preprocessing.

4.5 SPARQL

SPARQL? is the W3C recommended query language for RDF data. It was first released
in 2008, the latest version is SPARQL 1.1 which was released in 2013.

SPARQL is based on graph pattern matching and can therefore be used for performing
pattern matching. SPARQL 1.1 provides aggregate functions like SUM and AVG similar to
SQL which enables the utilization of SPARQL for descriptive statistics and aggregation. In
addition, a recent paper by Techentin et al. [2014] demonstrates how to implement iterative
algorithms in SPARQL.

An appropriate tool for executing SPARQL queries is the ETL framework LinkedPipes
ETL®® which is already used in the OBEU project for data transformation and therefore
described in deliverable D2.1 (Engels et al. [2016]). LinkedPipes ETL allows for creating
and sharing pipelines performing the specified tasks using SPARQL components. A new
feature described in D2.2 enables to also dynamically generate SPARQL queries based
on the data flowing through the pipeline.

Features included (selection): Pattern Matching, Descriptive Statistics, Aggregation,
Iterative Algorithms.

4.6 OpenSpending

OpenSpending® is an open platform for public financial information, including budget and
spending data developed by the Open Knowledge Foundation, one of our project partners.
The aim is to “map the money worldwide”. OBEU will be build on top of the OpenSpending
system.

The OpenSpending platform offers an analytical HTTP APl which is called Babbage API®2,
This tool provides an interface that allows us to query against OpenSpending datasets.

23 https://www.python.org

24 http://www.numpy.org/

25 http://www.scipy.org/

26 hitp://matplotlib.org/

27 http://pandas.pydata.org/

28 http://scikit-learn.org/stable/

29 https://www.w3.org/TR/rdf-spargl-query/
30 hitp://etl.linkedpipes.com

31 https://openspending.org/

32 https://github.com/openspending/babbage
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Here is a list of available operations for this API:

e Getting a list of datasets.

e Getting a list of all fields for some particular dataset which are represented by
OLAP cubes with dimensions, hierarchical information, aggregations, measures
as financial attributes, data types, etc.

e Getting a list of entries which can be filtered by an attribute name and value. This
operation also supports paging and ordering.

e Display a histogram of some attribute.

e Calculation of the number of distinct values for some attribute.

o Getting aggregate statistics for a numeric attribute (now only the sum method is
available).

The API can be used for filtering entries by an exact value of some attribute or by a set
of attribute combinations with various values. There is no method for an advanced
filtering like greater than, less than, negation. It is possible to dump all entries and filter
it explicitly. For each nominal attribute the API is able to show a histogram and the
number of unique values. For a numeric/monetary attribute there is only one
aggregation method available now - the summation method. If the APl shows a
histogram for a nominal attribute there is also information about sum of all numeric
attributes aggregated for each distinct value. The OpenSpending community plans to
add additional aggregate functions such as min, max, avg, stdev, etc.

Within usage of the Babbage API there may occur a problem with inconsistencies of
attributes between two datasets. Each dataset may have different attribute names so
it can be hard to compare two entries from various datasets or to join records together.
Every field has a specific type like string, integer, date etc. Financial attributes are
individually separated; therefore it is easy to identify sums of money and their currency
across all fields, but within one dataset there may be multiple monetary fields. For
practical usage (such as visualization or aggregation) we should eliminate these
ambiguities among all attributes and datasets.

Babbage API does not contain any “machine learning” functions, e.g. for clustering,
outlier detection or pattern mining. There is no similarities functions or any methods for
an object comparison. This API could be used for these lightweight tasks in the
OpenBudgets project:

e Filtering

e Listing of distinct values

¢ Summation of financial attributes across user-defined filters (aggregation)
Histograms

e Summaries

4.7 EasyMiner

EasyMiner® is an open source web-based visual interface and REST API for association
rule mining. The system also offers classification based on associations (CBA) which
enables rule based classification. EasyMiner has been developed at University of
Economics, Prague since 2013. It offers an attractive graphical interactive interface which
allows users to easily define a pattern for rules that they are looking for in a dataset.

The application provides the complete data mining workflow for association rule mining
starting from dataset uploading over preprocessing and performing the association rules
mining to a final interpretation of the results. It has two basic versions “limited” and
“unlimited”. The “limited” part works with small and medium-size datasets (up to hundreds

33 http://www.easyminer.eu/
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of megabytes) using the R environment with an apriori in-memory solution and a typical
SQL relational database. This approach is usually very fast. The second “unlimited” part
uses the hadoop environment for all core operations, Apache Hive3* for warehousing and
Apache Spark® for association rules mining.

5 Requirements for Statistical Analytics
and Data Mining

In this section we summarize the requirements for statistical analytics and data mining for the
OBEU platform. The requirements are split into general requirements that arose in Section 3.3,
functional requirements derived from the discussion on the data mining and analytics tasks in
Section 3.5, pre-processing requirements, and an additional non-functional requirement that
occurred during the examination of the datasets to be analyzed.

5.1 General Functional Requirements

This is a summary of the general functional requirements related to data mining and
analytics identified in Section 3.3:

Requirement

Description

Priority

(RO1)

Algorithms have to be explained on the platform, all
parameters have to be transparent on request.

medium

(RO2)

Integrate an open-source data mining and analytics software
into the platform in order to apply state-of-the-art data
analysis for expert users.

medium

(RO3)

Incorporate additional context into the analysis. (This could
be accounting legislation; information of the budget process;
information on politicians, public procurement, and private
companies receiving money from the state; actual statistics;
..., ¢f. (R19), (R21) and (R22).)

medium

(RO4)

Have a special focus on EU funds in the analytics.

high

(RO5)

Implement notifications on specific changes in certain data
sets, monitoring.

low

Table 9: General Requirements for Data Mining and Statistical Analytics

5.2 Functional Requirements from Data Mining and Analytics

Tasks

These are the functional requirements for the OBEU platform arising from the identified
data mining and analytics tasks in Section 3.5:

Requirement

Description

Priority

(RO6)

Incorporate a similarity measure in algorithms based on
comparisons.

high

34 http://scikit-learn.org/stable/

35 http://spark.apache.org/
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(RO7) Perform rule/pattern mining. high
(RO8) Perform outlier/anomaly detection. high
(R0O9) Perform clustering. low
(R10) Perform pattern matching. low
(R11) Perform graph/network analysis. low
(R12) Perform descriptive statistics. high
(R13) Perform comparative analysis. high
(R14) Perform time series analysis. high
(R15) Perform aggregation. high
(R16) Calculate fiscal indicators. medium
(R17) Tag red flags. low

Table 10: Functional Requirements for Data Mining and Statistical Analytics

5.3 Pre-Processing Requirements

In this section we summarize those requirements related to data pre-processing (cf.
Section 3.3):

Requirement | Description Priority

(R18) Transform the data sets into an appropriate format (like CSV) high
for the data mining and statistical analytics tools.

(R19) Enrich the data sets with information on high
e Demographics

Geospatial classifications

Social and economic indicators
Accounting legislation

Annual audit and activity reports
Budget processes

Public procurement

Private companies receiving money from the state

(R20) Index data with respect to tabular and graph structures. low

(R21) Enrich and interlink the data sets with information on entities low
involved in allocating and receiving subsidies, tender
winners, politicians, and the relation between those.

(R22) Interlink budget and spending data of different government | high
levels and the engaged ministries and councils.

Table 11: Pre-Processing Requirements for Data Mining and Statistical Analytics
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5.4 Non-Functional Requirements

In this section we add a non-functional requirement that arose during the examination of
the data sets that will be analysed. As there are large data sets containing more than 10 M
triples, the data mining and analytics tools in OBEU have to be able to handle those.

Requirement | Description Priority

(R23) Ability to handle large data sets (= 10 M triples). high

Table 12: Non-Functional Requirements for Data Mining and Statistical Analytics

6 Conclusion

In this deliverable, we examined the so far collected user requirements of the OBEU platform
for those that are related to data mining and analytics. We extracted data mining and analytics
needs and transformed them into corresponding tasks. We provided an overview on
appropriate existing tools and software environments, and discussed each identified tasks
individually. Finally, we formulated 23 resulting requirements and assigned priorities.

In the coming months we will address these requirements and develop suitable tools for the
OBEU platform.

Note that these requirements might be updated according to the upcoming deliverables of our
use case partners, e.g. Deliverable D5.3 - User Requirement Reports - Final Cycle, which is
due M20.
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