

Project funded by the European Union’s Horizon 2020 Research and Innovation Programme (2014 – 2020)

OpenBudgets.eu: Fighting Corruption with Fiscal Transparency

Project Number: 645833 Start Date of Project: 01.05.2015 Duration: 30 months

D2.5 Data Mining Interfaces

Dissemination Level Public

Due Date of Deliverable 31.5.2017

Actual Submission Date 9.6.2017

Work Package WP 2, Data Collection and Mining

Task T2.5 Data Mining Interfaces

Type Demo

Approval Status Final

Version 1.1

Number of Pages 45

Filename D2.5 Data Mining Interfaces

D2.5 – v.1.1

Page 2

Abstract:

In this deliverable we describe the interfaces of the OpenBudgets.eu components for data

mining and statistical analysis, already described in Deliverable 2.4. Dependently on the

nature of the components, the functionalities are available via API endpoint, UI or via direct

integration into other systems (for example Python modules or R packages).

The information in this document reflects only the author’s views and the European Community is not liable for any use that

may be made of the information contained therein. The information in this document is provided “as is” without guarantee or

warranty of any kind, express or implied, including but not limited to the fitness of the information for a particular purpose. The

user thereof uses the information at his/ her sole risk and liability.

D2.5 – v.1.1

Page 3

History

Version Date Reason Revised by

1.0 31.5.2017 First version for internal review Stanislav Vojíř, Tiansi Dong

1.1 9.6.2017 Final version for submission Fabrizio Orlandi

Author List

Organisation Name Contact Information

UEP Jaroslav Kuchař jaroslav.kuchar@fit.cvut.cz

UEP Stanislav Vojíř stanislav.vojir@vse.cz

UEP Václav Zeman vaclav.zeman@vse.cz

UEP Jindřich Mynarz jindrich.mynarz@vse.cz

UEP Vojtěch Svátek svatek@vse.cz

OKFGR Kleanthis Koupidis koupidis@okfn.gr

OKFGR Aikaterini Chatzopoulou kchatzopoul@okfn.gr

OKFGR Charalampos Bratsas charalampos.bratsas@okfn.org

UBONN Tiansi Dong tdong@uni-bonn.de

UBONN Fathoni Musyaffa musyaffa@iai.uni-bonn.de

UBONN Kang Wang wk0206@gmail.com

Fraunhofer Fabrizio Orlandi fabrizio.orlandi@iais.fraunhofer.de

Fraunhofer Yakun Li Yakun.Li@iais.fraunhofer.de

mailto:jaroslav.kuchar@fit.cvut.cz
mailto:stanislav.vojir@vse.cz
mailto:vaclav.zeman@vse.cz
mailto:jindrich.mynarz@vse.cz
mailto:svatek@vse.cz
mailto:koupidis@okfn.gr
mailto:kchatzopoul@okfn.gr
mailto:charalampos.bratsas@okfn.org
mailto:tdong@uni-bonn.de
mailto:musyaffa@iai.uni-bonn.de
mailto:orlandi@iai.uni-bonn.de
mailto:Yakun.Li@iais.fraunhofer.de

D2.5 – v.1.1

Page 4

Executive Summary

In this deliverable, the authors describe the interfaces of the OpenBudgets.eu components for

data mining and statistical analysis described in previous Deliverable 2.4. Dependently on the

nature of the components, the functionalities are available via API endpoint, UI or via direct

integration into other systems (for example Python modules or R packages).

The main part of this deliverable contains a description of software interfaces of components.

For each component, it is provided a short description of the functionality, information about

the implementation and the description of both - outer interface and internal architecture of the

component.

The document is structured as follows: Chapter 2 describes the interfaces of DAM; Chapter 3

describes the interfaces of data pre-processing components; Chapter 4 describes the

interfaces of data mining components running at the three data mining servers, the OKFGR

server, UEP server, and Fraunhofer server. For complex data mining services, we also present

the internal architectures.

D2.5 – v.1.1

Page 5

Abbreviations and Acronyms

WP Work Package

OS OpenSpending

OBEU OpenBudgets.eu

OKGR Open Knowledge Greece

UEP University of Economics, Prague

D2.5 – v.1.1

Page 6

Table of Contents

1 Introduction 9

2 The Interface of Data Analysis and Mining (DAM) 10

2.1 Functional Interfaces of DAM 110

2.2 Communication Interface with UEP 12

2.2.1 Data Flow Inside DAM and uep_dm Module 12

2.2.2 Sample Usage 15

2.3 Communication Interfaces with Fraunhofer Server and OKFGR Server 16

2.3.1 Example: Communication with OKFGR server 16

2.3.2 Example: Communication with Fraunhofer Server 17

2.4 Meta-information of Algorithm for Indigo 18

3 Interfaces of Data Pre-processing 20

3.1 Discretization via SPARQL 20

4 Interfaces of the Three Data Mining Servers 22

4.1 EasyMiner - UEP Data Mining Server 22

4.1.1 Architecture & Internal APIs 22

4.1.2 Association Rule Mining API 24

4.1.3 Outlier Detection API 27

4.1.4 Association Rule Mining UI 28

4.1.5 fpmoutliers - R Package 29

4.2 OpenCPU Server - OKFGR Data Mining Server 31

4.2.1 DescriptiveStats.OBeu - R Package 31

4.2.2 TimeSeries.OBeu - R Package 34

4.2.3 Cluster.OBeu - R Package 37

4.3 Outlier_dm Lib - Fraunhofer Server 40

4.3.1 Input 40

4.3.2 Main Function 41

4.3.3 Output 42

5 Conclusion and Future Work 43

D2.5 – v.1.1

Page 7

List of Figures

Figure 1: Architecture of DAM and its functional communication with other modules 10

Figure 2: Endpoint of DAM 11

Figure 3: EasyMiner - Architecture of services 23

Figure 4: EasyMiner - User interface for association rule mining 29

Figure 5: OpenCPU Server Interface 32

Figure 6: OpenCPU Server - Descriptive Statistics Input Example 33

Figure 7: OpenCPU Server- Snapshot of Descriptive Statistics Output Example 34

Figure 8: OpenCPU Server- Time Series Input Example 36

Figure 9: OpenCPU Server - Time Series Request Example 37

Figure 10: OpenCPU Server - Snapshot of Time Series Output Example 38

Figure 11: OpenCPU Server - Cluster Analysis Input Example 39

Figure 12: OpenCPU Server - Cluster Analysis Request Example 40

Figure 13: OpenCPU Server - Snapshot of Time Series Output Example 41

Figure 14: Structure of the input CSV to outlier-detection based on LOF 42

Figure 15: Sample of the output CSV of the outlier detection based on LOF 43

D2.5 – v.1.1

Page 8

List of Tables

Table 1: Data mining module and its interfaces 9

Table 2: List of data mining endpoints and the processing place 11

Table 3: Input params for Figure 7 33

Table 4: Input params for Figure 9 36

Table 5: Input params for Figure 12 39

Table 6: The meaning of the main parameters of the main function of outlier detection based
LOF 42

D2.5 – v.1.1

Page 9

1 Introduction

This deliverable consists in interfaces of data mining and analytical tools mainly produced in

the context of task T2.4 and also in testing the tools (software components). This content of

this deliverable follows the previously submitted deliverable D2.4. We describe the functional

interfaces of the data analysis and mining tools and the functional communication interfaces

with front-end users. General issues on graphical user interfaces are reported in deliverables

of WP3, graphical interfaces of data mining are presented in this deliverable.

To achieve the extensibility of data mining services, we use the distributed architecture. That

is, data mining algorithms are allowed to be processed in different locations. Currently, we

have three locations: Thessaloniki (the OKFGR server in Greece), Prague (the UEP server in

Czech), Sankt Augustin (the Fraunhofer server in Germany). New data mining services can be

easily integrated into the existing platform.

The data mining service receives requests from Indigo-user interfaces, forwards the requests

to one or more of the three possible servers, and returns the results back to Indigo and its

graphical user interface. Functionally, the Data Analysis and Mining (DAM) module receives

requests from Indigo, performs some data pre-processing, sends the pre-processed data

mining requests to one of the data mining servers, and publishes the results at DAM end-point

for Indigo to fetch.

The rest of the document is structured as follows: Chapter 2 describes the interfaces of DAM;

Chapter 3 describes the interfaces of data pre-processing components; Chapter 4 describes

the interfaces of data mining components running at the three data mining servers, the OKFGR

server, UEP server, and Fraunhofer server. The components are listed in Table 1. For complex

data mining services, we also present the internal architectures.

Table 1: Data mining module and its interfaces

Data Mining Module Interfaces Provided
by server

Chapters

Descriptive statistics DescriptiveStats.OBeu - R package OKFGR 4.2.1

Time series analysis,
predictions

TimeSeries.OBeu - R package OKFGR 4.2.2

Clustering and Similarity
learning

Cluster.OBeu - R package OKFGR 4.2.3

Rule/pattern mining EasyMiner API
EasyMiner UI
EasyMiner Services Internal APIs

UEP 4.1.2
4.1.4
4.1.1

Outlier/anomaly detection EasyMiner API
jaroslav-kuchar/fpmoutliers - R package
outlier_dm - python module

UEP

Fraunhofer

4.1.4
4.1.5
4.3

D2.5 – v.1.1

Page 10

2 The Interface of Data Analysis and Mining (DAM)

Data analysis and mining modules of the OBEU project are located in three places: (1) UEP

server, (2) OKFGR server, (3) Fraunhofer server. The interface of Data Analysis and Mining

(DAM)1 provides a unified functional interface to process users’ requests. The DAM is

implemented using Python Flask. The DAM architecture and the functional communication with

other modules are illustrated in Figure 1.

Figure 1: Architecture of DAM and its functional communication with other modules

1 https://github.com/openbudgets/DAM

https://github.com/openbudgets/DAM

D2.5 – v.1.1

Page 11

2.1 Functional Interfaces of DAM

The root DAM endpoint is currently located at the Fraunhofer server and publicly reachable

at the following URL: http://dam-obeu.iais.fraunhofer.de/, as illustrated in Figure 2.

Figure 2: Endpoint of DAM2

The endpoint of each specific data mining task (algorithm) is named according to its function

name. The mechanism of forwarding the requests to different servers is transparent to the end-

users. Users do not know by which server the task is processed. All the endpoints are listed in

Table 2.

Table 2: List of data mining endpoints and the processing place

Data mining function End-point Processing place

statistics http://dam-obeu.iais.fraunhofer.de/statistics OKFGR server

time series http://dam-obeu.iais.fraunhofer.de/time_series OKFGR server

comparative analysis http://dam-obeu.iais.fraunhofer.de/KPI OKFGR server

outlier-detection (LOF) http://dam-
obeu.iais.fraunhofer.de/outlier_detection/LOF

Fraunhofer server

outlier-detection
(FQR)

http://dam-
obeu.iais.fraunhofer.de/outlier_detection/FQR

UEP server

rule-mining http://dam-obeu.iais.fraunhofer.de/rule_mining UEP server

2 This is the simplest way how to check whether DAM server works.

http://dam-obeu.iais.fraunhofer.de/
http://dam-obeu.iais.fraunhofer.de/statistics
http://dam-obeu.iais.fraunhofer.de/time_series
http://dam-obeu.iais.fraunhofer.de/KPI
http://dam-obeu.iais.fraunhofer.de/outlier_detection/LOF
http://dam-obeu.iais.fraunhofer.de/outlier_detection/LOF
http://dam-obeu.iais.fraunhofer.de/outlier_detection/FQR
http://dam-obeu.iais.fraunhofer.de/outlier_detection/FQR
http://dam-obeu.iais.fraunhofer.de/rule_mining

D2.5 – v.1.1

Page 12

2.2 Communication Interface with UEP

2.2.1 Data Flow Inside DAM and uep_dm Module

The uep_dm module provides a unified interface for DAM to send data mining requests to the

UEP server.

The DAM end-point of rule-mining is

 http://dam-obeu.iais.fraunhofer.de/rule_mining

The data format, which DAM receives from Indigo, is in JSON format, while the UEP server

needs CSV format. DAM will do data-preprocessing to transform JSON into CSV, construct a

data mining request based on the format required by the UEP server, and send both the data

and mining request to UEP server. Parameters required by the UEP server are as follows.

1. Set default value

○ apiURL

■ constant value which is the easymining server URL

■ CONSTANT

■ value: https://br-dev.lmcloud.vse.cz/easyminercenter/api

○ apiKEY

■ unique Key bound to user, for the identify of task

■ default value

■ value: <your api Key>

○ taskName

■ UEP server runs several tasks, this is to identify which task user request.

■ CONSTANT

■ value: simple

○ outputFormat

■ CONSTANT

■ json

○ antecedentColumns

■ default value

■ value: []

○ consequentColumns

■ default value

■ value: ["amount.sum"]

○ minConfidence

■ default value

■ value: 0.7

○ minSupport

■ default value

■ value: 0.1

○ csvSeparator

■ default value

http://dam-obeu.iais.fraunhofer.de/
http://dam-obeu.iais.fraunhofer.de/

D2.5 – v.1.1

Page 13

■ value: ,

○ csvEncoding

■ default value

■ value: utf8

Data-set is sent by Indigo with a link, such as: http://dam-

obeu.iais.fraunhofer.de/sample-data/aggregate.json

This link points to the data-set in the JSON format with the parameter name

“BABBAGE_FACT_URI” or “BABBAGE_AGGREGATE_URI”.

2. Get “filename” parameter

○ default: http://dam-obeu.iais.fraunhofer.de/sample-data/aggregate.json

○ get from BABBAGE_FACT_URI

○ get from BABBAGE_AGGREGATE_URI

As the EasyMiner API requires CSV data format as input, a preprocessing step is applied to

the JSON source.

3. Construct input CSV by “filename”

○ from JSON file to CSV by preprocessing

○ get name “inputCSVFileName”

Now we have the default values from step 1 and the CSV file from step 3 which is actually from

the source in step 2. We can send these parameters to the package uep_dm, calling the

function send_request_to_UEP_server.

4. Call send_request_to_UEP_server with parameter “inputCSVFileName” and all

parameters.

○ job = q_dm.enqueue_call(func=uep_dm.send_request_to_UEP_server,

args=[inputCSVFileName,taskName, apiURL,apiKEY,

outputFormat,antecedentColumns, consequentColumns,minConfidence,

minSupport,csvSeprator,csvEncoding], result_ttl=5000)

Then, we are jumping from DAM to uep_dm module, inside the

send_request_to_UEP_server function, the processing flow is as follows. First step is the

upload of the CSV file to the UEP server.

5. Upload CSV file to UEP server use upload_data_set

○ parameter

■ csv_file

■ csv_separator

■ csvEncoding

○ POST URL

■ requests.post(API_URL + '/datasources?separator=' +

urllib.parse.quote(csv_separator) + '&encoding=' + csvEncoding

http://dam-obeu.iais.fraunhofer.de/sample-data/aggregate.json
http://dam-obeu.iais.fraunhofer.de/sample-data/aggregate.json
http://dam-obeu.iais.fraunhofer.de/sample-data/aggregate.json

D2.5 – v.1.1

Page 14

+ '&type=limited&apiKey=' + API_KEY, files=files,

headers=headers)

○ get “dataSourceId”

Then second step is to create the miner instance and create the identification for the CSV

dataset.

6. Create data mining task by create_miner

○ parameter

■ dataSourceId

■ minerName

■ apiURL

■ apiKey

○ POST URL

■ requests.post(apiURL + "/miners?apiKey=" + apiKey,

headers=headers, data=json_data.encode())

○ get “minerId”

7. Get data column names by preprocess_data_fields_to_attributes

While the “taskName” parameter is “simple”, that means the task is a rule mining task, call

define_data_mining_task to send all requirement of the task to server. Inside the function,

it will first compose a JSON file json_data with some parameters like below, then post this

json_data to server.

8. Start task by define_data_mining_task

○ parameter

■ apiUrl, apiKey, taskName, minerId, minerName,

antecedentColumns, consequentColumns,

attributesColumnsMap,minConfidence, minSupport

○ json_data = json.dumps({"miner": minerId,

 "name": minerName,

 "limitHits": 1000,

 "IMs": [

 {

 "name": "CONF",

 "value": minConfidence

 },

 {

 "name": "SUPP",

 "value": minSupport

 }

],

 "antecedent": antecedent,

 "consequent": consequent

 })

○ POST URL

D2.5 – v.1.1

Page 15

■ requests.post(apiUrl + "/tasks/"+taskName+"?apiKey=" + apiKey,

headers=headers, data=json_data.encode())

○ get “task_id”

After we get the “task_id”, we can call the final function export_rules_in_JSON, inside this

function, it will start the task on server and then get response.

9. Get result from server by export_rules_in_JSON

○ start task

○ get result

○ check result by URL

2.2.2 Sample Usage

Suppose a user chooses (1) a dataset pointed by the link:

http://ws307.math.auth.gr/rudolf/public/api/3/cubes/budget-kilkis-

expenditure-

2015__74025/aggregate?drilldown=administrativeClassification.prefLabel%7Cec

onomicClassification.prefLabel%7CbudgetPhase.prefLabel&aggregates=amount.su

m

and (2) rule-mining as the data mining service.

The communication interface between Indigo and DAM is that Indigo knows that the DAM end-

point for rule mining, which is http://dam-obeu.iais.fraunhofer.de/rule_mining , and

that the link of the dataset shall be stored in BABBAGE_FACT_URI or BABBAGE_AGGREGATE_URI

variable.

Indigo can send the following curl command to DAM.

curl -H "Content-Type:application/json; charset=UTF-8" --requst POST

'http://dam-

obeu.iais.fraunhofer.de/rule_mining?BABBAGE_FACT_URI=http://ws307.math.auth

.gr/rudolf/public/api/3/cubes/budget-kilkis-expenditure-

2015__74025/aggregate?drilldown=administrativeClassification.prefLabel%7Cec

onomicClassification.prefLabel%7CbudgetPhase.prefLabel&aggregates=amount.su

m'

When DAM receives the above request, it will first do data pre-processing. In this case, it will

extract data from the link and save the data in a CSV file. Then, it will call the UEP interface,

push a new task in the job-queue, and create an endpoint for Indigo to fetch results. The

endpoint has the format: http://dam-obeu.iais.fraunhofer.de/results/<job-id>, for

example: http://dam-obeu.iais.fraunhofer.de/results/3ffecc31-e14a-4289-aee7-

833f3fdebc28

Indigo can fetch the data mining result through a curl command:

http://dam-obeu.iais.fraunhofer.de/outlier_detection/LOF/sample?BABBAGE_FACT_URI=http://ws307.math.auth.gr/rudolf/public/api/3/cubes/budget-kilkis-expenditure-2015__74025/aggregate?drilldown=administrativeClassification.prefLabel%7CeconomicClassification.prefLabel%7CbudgetPhase.prefLabel&aggregates=amount.sum
http://dam-obeu.iais.fraunhofer.de/outlier_detection/LOF/sample?BABBAGE_FACT_URI=http://ws307.math.auth.gr/rudolf/public/api/3/cubes/budget-kilkis-expenditure-2015__74025/aggregate?drilldown=administrativeClassification.prefLabel%7CeconomicClassification.prefLabel%7CbudgetPhase.prefLabel&aggregates=amount.sum
http://dam-obeu.iais.fraunhofer.de/outlier_detection/LOF/sample?BABBAGE_FACT_URI=http://ws307.math.auth.gr/rudolf/public/api/3/cubes/budget-kilkis-expenditure-2015__74025/aggregate?drilldown=administrativeClassification.prefLabel%7CeconomicClassification.prefLabel%7CbudgetPhase.prefLabel&aggregates=amount.sum
http://dam-obeu.iais.fraunhofer.de/outlier_detection/LOF/sample?BABBAGE_FACT_URI=http://ws307.math.auth.gr/rudolf/public/api/3/cubes/budget-kilkis-expenditure-2015__74025/aggregate?drilldown=administrativeClassification.prefLabel%7CeconomicClassification.prefLabel%7CbudgetPhase.prefLabel&aggregates=amount.sum
http://dam-obeu.iais.fraunhofer.de/outlier_detection/LOF/sample?BABBAGE_FACT_URI=http://ws307.math.auth.gr/rudolf/public/api/3/cubes/budget-kilkis-expenditure-2015__74025/aggregate?drilldown=administrativeClassification.prefLabel%7CeconomicClassification.prefLabel%7CbudgetPhase.prefLabel&aggregates=amount.sum
http://dam-obeu.iais.fraunhofer.de/rule_mining
http://dam-obeu.iais.fraunhofer.de/results/
http://dam-obeu.iais.fraunhofer.de/results/3ffecc31-e14a-4289-aee7-833f3fdebc28
http://dam-obeu.iais.fraunhofer.de/results/3ffecc31-e14a-4289-aee7-833f3fdebc28

D2.5 – v.1.1

Page 16

curl -H "Host:sub.domain.com" http://dam-

obeu.iais.fraunhofer.de/results/3ffecc31-e14a-4289-aee7-833f3fdebc28

If the job has not been finished, DAM will return the ‘wait’ status in a JSON format.

{"status": "Wait!"}

If the job is finished, DAM will return the data mining result in the JSON format.

2.3 Communication Interfaces with Fraunhofer Server and

OKFGR Server

DAM provides a unified interface for data mining requests which might be carried out at

Fraunhofer Server or OKFGR server. The unified interface for data mining request is:

http://dam-obeu.iais.fraunhofer.de/<task>[/subtask]

We provide two examples as follows.

2.3.1 Example: Communication with OKFGR server

Suppose a user chooses:

1. a JSON dataset pointed by the link

2. dimensions as follows:

functional_classification_2.Function|functional_classification_2.Code

3. 'Revised' amount,

4. coef.outl value is 0.8,

5. set box.outliers = TRUE,

6. box.wdth value is 0.2,

7. 'spearman' method for cor.method for statistic analysis.

The communication interface between Indigo and DAM is that Indigo knows that the DAM end-

point for statistical analysis, which is:

http://dam-obeu.iais.fraunhofer.de/statistics,

and that the link of the dataset shall be stored in BABBAGE_FACT_URI or

BABBAGE_AGGREGATE_URI variable. Other variables are: dimensions, amount, coef.outl,

boxxoutliers, box.wdth, cor.method.

Indigo can send the following curl command to DAM.

curl -H "Content-Type:application/json; charset=UTF-8" --requst POST

'http://dam-

obeu.iais.fraunhofer.de/statistics?json_data=sample_json_link_openspending&

dimensions='functional_classification_2.Function|functional_classification_

2.Code'&amount='Revised'&coef.outl=0.8&box.outliers=TRUE&box.wdth=0.2&cor.m

ethod='spearman'

http://dam-obeu.iais.fraunhofer.de/results/3ffecc31-e14a-4289-aee7-833f3fdebc28
http://dam-obeu.iais.fraunhofer.de/results/3ffecc31-e14a-4289-aee7-833f3fdebc28
http://dam-obeu.iais.fraunhofer.de/results/3ffecc31-e14a-4289-aee7-833f3fdebc28
http://dam-obeu.iais.fraunhofer.de/statistics

D2.5 – v.1.1

Page 17

When DAM receives the above request, it will first do data pre-processing. In this case, it will

extract data from the link and save the data in a CSV file. Then, it will call the OKFGR interface,

push a new task in the job-queue, and create an endpoint for Indigo to fetch results. The

endpoint has the format: http://dam-obeu.iais.fraunhofer.de/results/<job-id>, for

example http://dam-obeu.iais.fraunhofer.de/results/3ffecc31-e14a-4289-aee7-

833f3fdebc28

Indigo can fetch the data mining result through a curl command:

curl -H "Host:sub.domain.com" http://dam-

obeu.iais.fraunhofer.de/results/3ffecc31-e14a-4289-aee7-833f3fdebc28

If the job has not been finished, DAM will return the ‘wait’ status in a JSON format:

{"status": "Wait!"}

If the job is finished, DAM will return the data mining result in the JSON format.

2.3.2 Example: Communication with Fraunhofer Server

Suppose a user chooses (1) a dataset pointed by the link:

http://ws307.math.auth.gr/rudolf/public/api/3/cubes/budget-kilkis-

expenditure-

2015__74025/aggregate?drilldown=administrativeClassification.prefLabel%7Cec

onomicClassification.prefLabel%7CbudgetPhase.prefLabel&aggregates=amount.su

m

and (2) the LOF outlier-detection as the data mining service.

The communication interface between Indigo and DAM is that Indigo knows that the DAM end-

point for LOF outlier-detection, which is:

http://dam-obeu.iais.fraunhofer.de/outlier_detection/LOF/sample

or http://dam-obeu.iais.fraunhofer.de/outlier_detection/LOF,

and that the link of the dataset shall be stored in BABBAGE_FACT_URI variable.

Indigo can send the following curl command to DAM:

curl -H "Host:sub.domain.com" http://dam-

obeu.iais.fraunhofer.de/outlier_detection/LOF/sample?BABBAGE_FACT_URI=http:

//ws307.math.auth.gr/rudolf/public/api/3/cubes/budget-kilkis-expenditure-

2015__74025/aggregate?drilldown=administrativeClassification.prefLabel%7Cec

onomicClassification.prefLabel%7CbudgetPhase.prefLabel&aggregates=amount.su

m

When DAM receives the above request, it will first do data pre-processing. In this case, it will

extract data from the link and save the data in a CSV file. Then, it will call the LOF outlier-

detection interface, push a new task in the job-queue, and create an endpoint for Indigo to

fetch results. The endpoint has the format:

http://dam-obeu.iais.fraunhofer.de/results/<job-id>, for example: http://dam-

obeu.iais.fraunhofer.de/results/3ffecc31-e14a-4289-aee7-833f3fdebc28

http://dam-obeu.iais.fraunhofer.de/results/
http://dam-obeu.iais.fraunhofer.de/results/3ffecc31-e14a-4289-aee7-833f3fdebc28
http://dam-obeu.iais.fraunhofer.de/results/3ffecc31-e14a-4289-aee7-833f3fdebc28
http://dam-obeu.iais.fraunhofer.de/results/3ffecc31-e14a-4289-aee7-833f3fdebc28
http://dam-obeu.iais.fraunhofer.de/results/3ffecc31-e14a-4289-aee7-833f3fdebc28
http://dam-obeu.iais.fraunhofer.de/outlier_detection/LOF/sample?BABBAGE_FACT_URI=http://ws307.math.auth.gr/rudolf/public/api/3/cubes/budget-kilkis-expenditure-2015__74025/aggregate?drilldown=administrativeClassification.prefLabel%7CeconomicClassification.prefLabel%7CbudgetPhase.prefLabel&aggregates=amount.sum
http://dam-obeu.iais.fraunhofer.de/outlier_detection/LOF/sample?BABBAGE_FACT_URI=http://ws307.math.auth.gr/rudolf/public/api/3/cubes/budget-kilkis-expenditure-2015__74025/aggregate?drilldown=administrativeClassification.prefLabel%7CeconomicClassification.prefLabel%7CbudgetPhase.prefLabel&aggregates=amount.sum
http://dam-obeu.iais.fraunhofer.de/outlier_detection/LOF/sample?BABBAGE_FACT_URI=http://ws307.math.auth.gr/rudolf/public/api/3/cubes/budget-kilkis-expenditure-2015__74025/aggregate?drilldown=administrativeClassification.prefLabel%7CeconomicClassification.prefLabel%7CbudgetPhase.prefLabel&aggregates=amount.sum
http://dam-obeu.iais.fraunhofer.de/outlier_detection/LOF/sample?BABBAGE_FACT_URI=http://ws307.math.auth.gr/rudolf/public/api/3/cubes/budget-kilkis-expenditure-2015__74025/aggregate?drilldown=administrativeClassification.prefLabel%7CeconomicClassification.prefLabel%7CbudgetPhase.prefLabel&aggregates=amount.sum
http://dam-obeu.iais.fraunhofer.de/outlier_detection/LOF/sample?BABBAGE_FACT_URI=http://ws307.math.auth.gr/rudolf/public/api/3/cubes/budget-kilkis-expenditure-2015__74025/aggregate?drilldown=administrativeClassification.prefLabel%7CeconomicClassification.prefLabel%7CbudgetPhase.prefLabel&aggregates=amount.sum
http://dam-obeu.iais.fraunhofer.de/outlier_detection/LOF/sample?BABBAGE_FACT_URI=http://ws307.math.auth.gr/rudolf/public/api/3/cubes/budget-kilkis-expenditure-2015__74025/aggregate?drilldown=administrativeClassification.prefLabel%7CeconomicClassification.prefLabel%7CbudgetPhase.prefLabel&aggregates=amount.sum
http://dam-obeu.iais.fraunhofer.de/outlier_detection/LOF
http://dam-obeu.iais.fraunhofer.de/outlier_detection/LOF/sample?BABBAGE_FACT_URI=http://ws307.math.auth.gr/rudolf/public/api/3/cubes/budget-kilkis-expenditure-2015__74025/aggregate?drilldown=administrativeClassification.prefLabel%7CeconomicClassification.prefLabel%7CbudgetPhase.prefLabel&aggregates=amount.sum
http://dam-obeu.iais.fraunhofer.de/outlier_detection/LOF/sample?BABBAGE_FACT_URI=http://ws307.math.auth.gr/rudolf/public/api/3/cubes/budget-kilkis-expenditure-2015__74025/aggregate?drilldown=administrativeClassification.prefLabel%7CeconomicClassification.prefLabel%7CbudgetPhase.prefLabel&aggregates=amount.sum
http://dam-obeu.iais.fraunhofer.de/outlier_detection/LOF/sample?BABBAGE_FACT_URI=http://ws307.math.auth.gr/rudolf/public/api/3/cubes/budget-kilkis-expenditure-2015__74025/aggregate?drilldown=administrativeClassification.prefLabel%7CeconomicClassification.prefLabel%7CbudgetPhase.prefLabel&aggregates=amount.sum
http://dam-obeu.iais.fraunhofer.de/outlier_detection/LOF/sample?BABBAGE_FACT_URI=http://ws307.math.auth.gr/rudolf/public/api/3/cubes/budget-kilkis-expenditure-2015__74025/aggregate?drilldown=administrativeClassification.prefLabel%7CeconomicClassification.prefLabel%7CbudgetPhase.prefLabel&aggregates=amount.sum
http://dam-obeu.iais.fraunhofer.de/outlier_detection/LOF/sample?BABBAGE_FACT_URI=http://ws307.math.auth.gr/rudolf/public/api/3/cubes/budget-kilkis-expenditure-2015__74025/aggregate?drilldown=administrativeClassification.prefLabel%7CeconomicClassification.prefLabel%7CbudgetPhase.prefLabel&aggregates=amount.sum
http://dam-obeu.iais.fraunhofer.de/outlier_detection/LOF/sample?BABBAGE_FACT_URI=http://ws307.math.auth.gr/rudolf/public/api/3/cubes/budget-kilkis-expenditure-2015__74025/aggregate?drilldown=administrativeClassification.prefLabel%7CeconomicClassification.prefLabel%7CbudgetPhase.prefLabel&aggregates=amount.sum
http://dam-obeu.iais.fraunhofer.de/outlier_detection/LOF/sample?BABBAGE_FACT_URI=http://ws307.math.auth.gr/rudolf/public/api/3/cubes/budget-kilkis-expenditure-2015__74025/aggregate?drilldown=administrativeClassification.prefLabel%7CeconomicClassification.prefLabel%7CbudgetPhase.prefLabel&aggregates=amount.sum
http://dam-obeu.iais.fraunhofer.de/results/
http://dam-obeu.iais.fraunhofer.de/results/3ffecc31-e14a-4289-aee7-833f3fdebc28
http://dam-obeu.iais.fraunhofer.de/results/3ffecc31-e14a-4289-aee7-833f3fdebc28

D2.5 – v.1.1

Page 18

Indigo can fetch the data mining result through a cur command:

curl -H "Host:sub.domain.com" http://dam-

obeu.iais.fraunhofer.de/results/3ffecc31-e14a-4289-aee7-833f3fdebc28

If the job has not been finished, DAM will return the ‘wait’ status in a JSON format.

{"status": "Wait!"}

If the job is finished, DAM will return the data mining result in the JSON format.

2.4 Meta-information of Algorithm for Indigo

To dynamically construct user interface, DAM provides Indigo with meta-information of each

data mining algorithms. The interface is structured in a JSON file as follows.

 "<function_name>": {

 "configurations": {

 "facts": {

 "inputs": {

 "BABBAGE_FACT_URI": {

 "name": "BABBAGE_FACT_URI",

 "title": "",

 "cardinality": <a natural number>,

 "guess": <boolean>,

 "required": <boolean>,

 "type": "URI pointing to a Babbage compliant

facts API request"

 }

 },

 "outputs": {

 "output": {

 "name": "output",

 "cardinality": <a natural number>,

 "type": <value|collection of objects>

 }

 },

 "prompt": "...",

 "method": 0,

 "endpoint": "",

 "name": "facts",

 "title": ""

 }

 },

 "name": "",

 "title": "",

 "description": ""

 }

http://dam-obeu.iais.fraunhofer.de/results/3ffecc31-e14a-4289-aee7-833f3fdebc28
http://dam-obeu.iais.fraunhofer.de/results/3ffecc31-e14a-4289-aee7-833f3fdebc28

D2.5 – v.1.1

Page 19

For example, the metadata information of outlier detection is described as below.

{ "outlier_detection": {

 "configurations": {

 "facts": {

 "inputs": {

 "BABBAGE_FACT_URI": {

 "name": "BABBAGE_FACT_URI",

 "title": "Data coming from an aggregation",

 "cardinality": "1",

 "guess": false,

 "required": true,

 "type": "URI pointing to a Babbage compliant

facts API request"

 }

 },

 "outputs": {

 "output": {

 "name": "output",

 "cardinality": 1,

 "type": "collection of objects"

 }

 },

 "prompt": "Build an aggregate, with a time-related drill-down

and then enter the prediction steps parameter from the left and click

on the execute button on top right.",

 "method": 0,

 "endpoint": "http://dam-

obeu.iais.fraunhofer.de/outlier_detection/LOF",

 "name": "facts",

 "title": "Facts outlier detection"

 }

 },

 "name": "outlier_detection",

 "title": "Outlier Detection",

 "description": ""

 }

D2.5 – v.1.1

Page 20

3 Interfaces of Data Pre-processing

3.1 Discretization via SPARQL

In order to enable discretization of RDF data we implemented a command-line tool that allows

to discretize numeric literals in RDF via SPARQL. Discretization, which is also known as

binning, converts continuous numeric values into discrete intervals. This allows to treat

numbers as categorical data, which is required by some data mining tools. For example,

discretization is used for association rule mining with EasyMiner (4.1), outlier detection with

FPM (4.1.5), or tensor factorization with RESCAL.3 While EasyMiner has discretization built in,

discretization via SPARQL can be incorporated directly in data preprocessing for generic data

mining tasks. This is why we decided to wrap the EasyMiner-Discretization4 library and allow

to apply it via SPARQL Update.

The tool supports three discretization methods: equidistance, equifrequency, and equisize.

Equidistant discretization creates intervals of the same size, equifrequent discretization

creates intervals with approximately the same number of members, and equisized

discretization creates intervals based on minimum support. Equidistant and equifrequent

discretization requires user to specify the desired integer number of intervals (bins) to

generate. Equisized discretization requires user to provide the minimum support (∈ (0, 1)) that

a generated interval must have.

Application of discretization is guided via a SPARQL Update operation that uses wishful

thinking. The operation contains a placeholder variable ?interval, to which the tool binds the

generated intervals by rewriting the operation. This allows to specify many ways in which the

generated intervals should be used. For example, the intervals can replace the discretized

numeric literals or they can be inserted as objects of an additional property. Here is an example

of such operation:

PREFIX : <http://example.com/>
PREFIX obeu-measure: <http://data.openbudgets.eu/ontology/dsd/measure/>

WITH <http://data.openbudgets.eu/resource/dataset/budget-athens-
expenditure-2015>
DELETE {
 ?observation obeu-measure:amount ?value .
}
INSERT {
 ?observation :discretizedAmount ?interval .
}
WHERE {
 ?observation obeu-measure:amount ?value .
}

3 https://github.com/mnick/rescal.py
4 https://github.com/KIZI/EasyMiner-Discretization

https://github.com/mnick/rescal.py
https://github.com/KIZI/EasyMiner-Discretization

D2.5 – v.1.1

Page 21

In this operation the WHERE clause select the values to discretize, the INSERT clause inserts

the generated intervals as objects of the :discretizedAmount property, and the DELETE

clause deletes the original numeric values. In the background, the operation is rewritten to

paged SELECT queries to fetch the values to be discretized. Once discretization generates the

intervals, the operation is rewritten to a SPARQL Update operation that implements its

specified transformation.

The generated intervals are represented as instances of schema:QuantitativeValue. The

bounds of the intervals are described using schema:minValue for the lower bound and

schema:maxValue for the upper bound. Classes from the SemanticScience Integrated

Ontology5 are used to determine whether the bounds are open or closed. The intervals are

identified with UUID-based URNs. The following listing shows an example interval.

@prefix schema: <http://schema.org/> .
@prefix sio: <http://semanticscience.org/resource/SIO_> .

<urn:uuid:4E98F3EE-2861-4A4B-A39C-487A7018165E> a schema:QuantitativeValue,
 sio:001254, # Left-closed interval
 sio:001252 ; # Right-open interval
 schema:minValue 1000 ;
 schema:maxValue 3000 .

The intervals are loaded into a named graph provided via the graph CLI parameter. If this

parameter is missing, the tool attempts to guess a named graph to load the interval to. It uses

the graph specified by WITH, USING, or in the INSERT clause. If no graph is found, the tool asks

you to provide it explicitly via graph.

If not all values to be discretized are numeric, the non-numeric values are ignored unless the

strict CLI parameter is used. In such case the discretization fails if it encounters a non-

numeric value. An example invocation of the tool is shown here:

discretize_sparql --endpoint http://localhost:8890/sparql-auth \
 --auth dba:dba \
 --update discretize_amounts.ru \
 --method equifrequency \
 --bins 15 \
 --strict

A special treatment is applied if OpenLink Virtuoso6 is used as the queried RDF store. Since
Virtuoso has limited support for decimal digits in xsd:decimal, the tool rounds the generated

intervals to this supported maximum precision to avoid values left outside of the generated
intervals.

The tool is released as open source and is available at:

https://github.com/jindrichmynarz/discretize-sparql

5 http://semanticscience.org
6 https://virtuoso.openlinksw.com

https://github.com/jindrichmynarz/discretize-sparql
http://semanticscience.org/
https://virtuoso.openlinksw.com/

D2.5 – v.1.1

Page 22

4 Interfaces of the Three Data Mining Servers

This chapter contains description of interfaces of the three currently used data mining servers:

4.1 UEP EasyMiner Server, 4.2 OKFGR OpenCPU Server and 4.3 Outlier_dm lib at Fraunhofer

Server.

4.1 EasyMiner - UEP Data Mining Server

EasyMiner is a complex web data mining system for data mining of association rules and outlier

detection. The system is being developed at the University of Economics, Prague.

The system is based on a web service architecture supporting the individual steps of the data

mining process (data upload, data preprocessing, execution of data mining algorithms,

testing).

The end user does not have to use all the individual web services and their APIs. In the

integration component, EasyMinerCenter, there is a complex API supporting the full

functionality. There is also a GUI available (see Figure 4).

4.1.1 Architecture & Internal APIs

Data mining system EasyMiner is based on connection of RESTful web services architecture.

This architecture is shown in Figure 3. The main components are EasyMinerCenter,

EasyMiner-Data, EasyMiner-Preprocessing, EasyMiner-Miner and EasyMiner-Scorer. The

frontend component (service) is EasyMinerCenter, other components belong to the backend.

Each component has documented RESTful API. In case of need, it is able to call directly a

selected backend service. The API documentation is available in Swagger form. In the

following text, the paths to the documentation are written for the default installation

architecture7 of EasyMiner.

7 The default installation is available using Docker images - see https://github.com/kizi/easyminer

https://github.com/kizi/easyminer

D2.5 – v.1.1

Page 23

Figure 3: EasyMiner - Architecture of services

EasyMinerCenter

● Front the user's perspective, this is the only interface, with which the user must

communicate. This component provides graphical user interface (usable in each

modern web browser) and RESTful API for integration with other systems (or simple

user scripting).

● The main functionality of this component is integration of other (back-end) services and

user and task management.

● UI: <server>/easyminercenter

● API: <server>/easyminercenter/api

● API documentation: <server>/easyminercenter/api

EasyMiner-Data

● Service for management of data sources. This service supports upload data in CSV or

RDF and its storage into database. The data are stored in database - MySQL

(MariaDB) or Hive.

● API: <server>/easyminer-data/api/v1

● API documentation: <server>/easyminer-data/index.html

EasyMiner-Preprocessing

● The preprocessing service supports creation of datasets for data mining. It takes data

fields from datasource stores using EasyMiner-Data and prepares data fields using one

of these preprocessing algorithms: each value-one bin, intervals enumeration, nominal

enumeration, equidistant intervals, equisized intervals.

D2.5 – v.1.1

Page 24

● This service also provides the “hashing” functionality for support of special characters

in data values within the run of data mining tools in EasyMiner-Miner.

● API: <server>/easyminer-preprocessing/api/v1

● API documentation: <server>/easyminer-preprocessing/index.html

EasyMiner-Miner

● The service EasyMiner-Miner support the run of data mining algorithms for data mining

of association rules (optionally with pruning) and outlier detection. The service executes

algorithms Apriori, FP-Growth, rCBA and fpmoutlier (described in deliverable D2.4).

● API: <server>/easyminer-miner/api/v1

● API documentation: <server>/easyminer-miner/index.html

EasyMiner-Scorer

● EasyMiner-Scorer is a web service for testing of classification models based on

association rules.

● API: <server>/easyminer-scorer/v0.3/

● API documentation: <server>/easyminer-scorer/index.html

4.1.2 Association Rule Mining API

For usage of API, the user must have an own user account in the EasyMinerCenter. For the

purpose of authentication, each user account has an own API key. The API key can be

generated using GUI or using a POST request to API:

<server>/easyminercenter/api/users

An example of usage of the association rule mining API (written in Python) is available on the

URL: http://www.easyminer.eu/api-tutorial

Data mining process using the main EasyMiner API endpoint8:

1. Upload data in CSV

○ the data can optionally be zipped

○ suitable for files of limited size (up to 50MB), for larger files, the user must use a

cyclical post call directly on data service

headers = {"Accept": "application/json"}

files = {("file", open(CSV_FILE, 'rb'))}

r = requests.post(API_URL + '/datasources?separator=' +

urllib.parse.quote(

 CSV_SEPARATOR) + '&encoding=' + CSV_ENCODING +

'&type=limited&apiKey=' + API_KEY, files=files, headers=headers)

datasource_id = r.json()["id"]

2. Create miner

headers = {'Content-Type': 'application/json', "Accept":

"application/json"}

8 EasyMiner API endpoint is currently available at: https://br-
dev.lmcloud.vse.cz/easyminercenter/api

http://www.easyminer.eu/api-tutorial
https://br-dev.lmcloud.vse.cz/easyminercenter/api
https://br-dev.lmcloud.vse.cz/easyminercenter/api

D2.5 – v.1.1

Page 25

json_data = json.dumps({"name": "TEST MINER", "type": "cloud",

"datasourceId": datasource_id})

r = requests.post(API_URL + "/miners?apiKey=" + API_KEY, headers=headers,

data=json_data.encode())

miner_id = r.json()["id"]

3. Preprocess data – generate data fields from data fields stored in a data source

○ the user defines preprocessing algorithm for each attribute; it is also possible to

generate more attributes from one data field

headers = {'Content-Type': 'application/json', "Accept":

"application/json"}

r = requests.get(API_URL + '/datasources/' + str(datasource_id) +

'?apiKey=' + API_KEY, headers=headers)

datasource_columns = r.json()['column']

attributes_columns_map = {}

for col in datasource_columns:

 column = col["name"]

 json_data = json.dumps(

 {"miner": miner_id, "name": column, "columnName": column,

"specialPreprocessing": "eachOne"})

 r = requests.post(API_URL + "/attributes?apiKey=" + API_KEY,

headers=headers, data=json_data.encode())

 if r.status_code != 201:

 break # error occured

 attributes_columns_map[column] = r.json()['name'] # map of created

attributes (based on the existing data fields)

4. Define association rule mining task

○ attributes for the antecedent and consequent parts of association rules (with any value

or with a fixed value)

○ definition of threshold values of requested interest measures (confidence, support,

lift)

define data mining task

antecedent = []

consequent = []

prepare antecedent pattern

if len(ANTECEDENT_COLUMNS):

 # add to antecedent only fields defined in the constant

 for column in ANTECEDENT_COLUMNS:

 antecedent.append({"attribute":attributes_columns_map[column]})

else:

 # add to antecedent all fields not used in consequent

D2.5 – v.1.1

Page 26

 for (column, attribute_name) in attributes_columns_map.items():

 if not(column in CONSEQUENT_COLUMNS):

 antecedent.append({"attribute": attribute_name})

prepare consequent pattern

for column in CONSEQUENT_COLUMNS:

 consequent.append({"attribute": attributes_columns_map[column]})

 json_data = json.dumps({"miner": miner_id,

 "name": "Test task",

 "limitHits": 1000,

 "IMs": [

 {

 "name": "CONF",

 "value": MIN_CONFIDENCE

 },

 {

 "name": "SUPP",

 "value": MIN_SUPPORT

 }

],

 "antecedent": antecedent,

 "consequent": consequent

 })

define new data mining task

r = requests.post(API_URL + "/tasks/simple?apiKey=" + API_KEY,

headers=headers, data=json_data.encode())

print("create task response code:" + str(r.status_code))

task_id = str(r.json()["id"])

5. Execute the mining task

r = requests.get(API_URL + "/tasks/" + task_id + "/start?apiKey=" +

API_KEY, headers=headers)

while True:

 time.sleep(1)

 # check state

 r = requests.get(API_URL + "/tasks/" + task_id + "/state?apiKey=" +

API_KEY, headers=headers)

 task_state = r.json()["state"]

 print("task_state:" + task_state)

 if task_state == "solved":

 break

 if task_state == "failed":

 print("task failed executing")

D2.5 – v.1.1

Page 27

 break

6. Export the results (in PMML AssociationModel, GUHA PMML or simple JSON)

export rules in JSON format

headers = {"Accept": "application/json"}

r = requests.get(API_URL + '/tasks/' + task_id + '/rules?apiKey=' +

API_KEY, headers=headers)

task_rules = r.json()

export of standardized PMML AssociationModel

r = requests.get(API_URL + '/tasks/' + task_id +

'/pmml?model=associationmodel&apiKey=' + API_KEY)

pmml = r.text

export of GUHA PMML

r = requests.get(API_URL + '/tasks/' + task_id +

'/pmml?model=guha&apiKey=' + API_KEY)

guha_pmml = r.text

The described, main RESTful API of EasyMiner is the integration interface for other software

tools developed in the OpenBudgets.eu Project.

The functionality of association rules mining and building of classification models based on

association rules was completely tested using standard datasets from UCI repository.

4.1.3 Outlier Detection API

The outlier detection is integrated with other services of the data mining system EasyMiner.

The data mining process for outlier detection tasks is described in the following list. The first

three steps are the same as in the process for association rule mining. It is also possible to

use the same prepared dataset for both tasks - for outlier detection and also for association

rule mining.

1. Upload data in CSV

2. Create miner

3. Preprocess data – generate data fields from data fields stored in a data source

○ the user defines preprocessing algorithm for each attribute

○ opposite to the association rule mining tasks, it is necessary to create only attributes,

which should be used for outlier detection task (it is not possible to select only a subset

of attributes in the task definition)

4. Define outlier detection mining task

headers = {'Content-Type': 'application/json', "Accept":

"application/json"}

json_data = json.dumps({"miner": miner_id, "minSupport": min_support})

D2.5 – v.1.1

Page 28

r = requests.post(API_URL + "/outliers-tasks?apiKey=" + API_KEY,

headers=headers, data=json_data.encode())

outlier_task_id = r.json()["id"]

5. Execute the mining task

r = requests.get(API_URL + "/outliers-tasks/" + outlier_task_id +

"/start?apiKey=" + API_KEY, headers=headers)

while True:

 time.sleep(1)

 # check state

 r = requests.get(API_URL + "/outliers-tasks/" + outlier_task_id +

"/state?apiKey=" + API_KEY, headers=headers)

 task_state = r.json()["state"]

 print("task_state:" + task_state)

 if task_state == "solved":

 break

 if task_state == "failed":

 print("task failed executing")

 break

6. Read the results

offset = 0

limit = 10

headers = {"Accept": "application/json"}

r = requests.get(API_URL + '/outliers-tasks/' + outlier_task_id +

'/outliers?apiKey=' + API_KEY + '&offset=' + offset + '&limit=' + limit,

headers=headers)

outliers = r.json()['outlier']

4.1.4 Association Rule Mining UI

EasyMiner provides to the users also graphical web user interface. The user can use it in each

modern web browser. The GUI is available on the URL <server>/easyminercenter.

Figure 4 shows the “main” UI for data mining of association rules. The full UI is based on

drag&drop operations. On the right side, there are pallets of data fields (original data columns

from datasource; A) a and preprocessed attributes (B) usable in association rules. The user

defines a “pattern” of association rules (C) – dropping the attributes in the antecedent and

consequent part of the pattern. The results are then shown in the section “Discovered rules”

(D). In the development of this deliverable, the UI was modified for the support of special and

non-ASCII characters in names and values of data fields and attributes.

For this deliverable, it is important, that the main RESTful API endpoint and graphical UI are

fully compatible. The user can for example define the preprocessing and a "testing" task using

D2.5 – v.1.1

Page 29

UI and then run more tasks using API calls - on the same prepared (preprocessed) datasets,

collecting the results into one repository.

Figure 4: EasyMiner - User interface for association rule mining

4.1.5 fpmoutliers - R Package

This section documents the R implementation of algorithms for detection of outliers based on

frequent pattern mining. The package is developed on the University of Economics, Prague.

The current versions supports multiple algorithms for the outlier detection based on frequent

pattern mining. There are implementations of six existing algorithms as baselines (FPCOF,

FPOF, LFPOF, MFPOF, WCFPOF, WFPOF) and one innovative approach (FPI).

All implemented methods require input data as a data frame in R and parameter minSupport

- minimum support interest measure. It is the same measure as explained in EasyMiner

section. Lower value will cause revealing of less frequent patterns in data and improve the

quality and readability of provided outputs. However, lower values also lead to higher

complexity of the computation.

The output is a list that mainly contains outlier scores - one value for each input row from the

data frame:

● minSupport - minimum support setting for frequent itemsets mining

● maxlen - maximum length of frequent itemsets

● model - frequent itemset model represented as itemsets-class from R arules package

● scores - outlier/anomaly scores for each observation/row of the input dataframe

Example of a basic usage for FPI:

library(fpmoutliers)

dataFrame <- read.csv(system.file("extdata", "fp-outlier-customer-

data.csv", package = "fpmoutliers"))

model <- FPI(dataFrame, minSupport = 0.001)

D2.5 – v.1.1

Page 30

dataFrame <- dataFrame[order(model$scores, decreasing = TRUE),]

print(dataFrame[1,]) # instance with the highest anomaly score

print(dataFrame[nrow(dataFrame),]) # instance with the lowest anomaly

score

The package is also focused on explanations of outlier scores. There is a function

visualizeInstance(dataFrame, index), where index is index of instance in the data frame

that we would like to visualize using bar plots. Example of usage:

library("fpmoutliers")

dataFrame <- read.csv(

 system.file("extdata", "fp-outlier-customer-data.csv", package =

"fpmoutliers"))

model <- FPI(dataFrame, minSupport = 0.001)

sort data by the anomaly score

dataFrame <- dataFrame[order(model$scores, decreasing = TRUE),]

visualizeInstance(dataFrame, 1) # instance with the highest anomaly score

visualizeInstance(dataFrame, nrow(dataFrame)) # instance with the lowest

anomaly score

The visual explanations using bar plots are limited by the number of columns in the input

dataframe. The visualization is suitable up to 6-8 columns. The module also provides

implementation of textual explanations: describeInstance(dataFrame, model, index),

where model is the model provided by the outlier detection method (e.g. FPI). The output is a

list that describes the instance: overall outlier score (parameter score), frequent itemsets that

match the instance (parameter itemsets) and also provides information about contributions of

attributes to the overall outlier score (parameter scores):

library("fpmoutliers")

dataFrame <- read.csv(

 system.file("extdata", "fp-outlier-customer-data.csv", package =

"fpmoutliers"))

model <- FPI(dataFrame, minSupport = 0.001)

sort data by the anomaly score

dataFrame <- dataFrame[order(model$scores, decreasing = TRUE),]

instance with the highest anomaly score

out <- describeInstance(dataFrame, model, 1)

instance with the lowest anomaly score

out <- describeInstance(dataFrame, model, nrow(dataFrame))

Experimental implementation of automatic build. The algorithm uses simple heuristics to

automatically set optimal values for the minSupport parameter. The output is the same model

as for other outlier detection implementations. Currently suitable and tested only on small

datasets:

D2.5 – v.1.1

Page 31

library("fpmoutliers")

data("iris")

model <- fpmoutliers::build(iris)

The tool is released as open source and is available at:

https://github.com/jaroslav-kuchar/fpmoutliers

4.2 OpenCPU Server - OKFGR Data Mining Server

4.2.1 DescriptiveStats.OBeu - R Package

“DescriptiveStats.OBeu” package was built in R Software environment and it's publicly

available on Github9. It enables the calculation of descriptive statistical measures in Budget

data of municipalities across Europe, according to the OpenBudgets.eu data model. It provides

the parameters of simple visualizations to meet the tasks of users’ needs that were described

in detail in Deliverable 2.3 - “Requirements for Statistical Analytics and Data Mining

Techniques”.

“DescriptiveStats.OBeu” includes functions for measuring central tendency and dispersion of

numeric variables along with their distributions and correlations and the frequencies of

categorical variables for a given dataset of the input OpenBudgets.eu fiscal datasets.

The input dataset of the main function is a JSON link or a JSON file or a text in JSON format.

There are different parameters that a user could specify (see the package specification) and

interact with the results, but the at least should be defined the “dimensions”,

“measured.dimensions” and “amounts” parameters to form the dataset. Next, there is an

automated process that calculates the basic descriptive measures of tendency and spread,

boxplot and histogram parameters to describe and visualize the distribution characteristics of

the desired fiscal dataset.

The final returns of this process are contained in a list of parameters in JSON format that are

needed to form summary tables of central tendency and dispersion measures and visualize

boxplots, histograms, barplots and correlation matrices of the input fiscal data (for further

details about the package see ds.analysis function10).

9 https://github.com/okgreece/DescriptiveStats.OBeu
10 https://github.com/okgreece/DescriptiveStats.OBeu/blob/master/R/ds.analysis.R

https://github.com/jaroslav-kuchar/fpmoutliers
https://github.com/okgreece/DescriptiveStats.OBeu
https://github.com/okgreece/DescriptiveStats.OBeu/blob/master/R/ds.analysis.R

D2.5 – v.1.1

Page 32

Figure 5: OpenCPU Server Interface

The main parts of the returned result of a process are contained in a list that consists of:

● Descriptives - the central tendency and spread measures (min, max, range, mean,

median, quantiles, variance, standard deviation, skewness, kurtosis)

● Boxplot - boxplot parameters (lo.whisker, lo.hinge, median, up.hinge,

up.whisker, box.width, lo.out, up.out, n)

● Histogram - histogram parameters (cuts, counts, normal.curve, mean, median)

● Frequencies - barplot parameters (frequencies, relative.frequencies)

● Correlation - correlation matrix (cor.matrix)

Example of usage

The user should load the library, specify the function “open_spending.ds” in the endpoint and

the method as “POST”.

The next step is to specify the name of the parameters and their values, described before.

D2.5 – v.1.1

Page 33

Figure 6: OpenCPU Server - Descriptive Statistics Input Example

The example in the following figure includes these inputs:

Table 3: Input params for Figure 7

Param Name Param Value

json_data
"http://next.openspending.org/api/3/cubes/4b6d969e07ef7
a86aa54e539fc127a14:wuppertalhaushalt/facts"

dimensions "functional_classification_3.Produktgruppe|date_2.Year"

amounts "Amount"

The HTTP request options return the results in the right panel:

“/ocpu/tmp/x07b999c660/R/.val”. The option with “.val” includes the desired results.

D2.5 – v.1.1

Page 34

Figure 7: OpenCPU Server- Snapshot of Descriptive Statistics Output Example

The output of this process are the parameters described before in JSON format. These

parameters will be used further as the input for the visualizations.

4.2.2 TimeSeries.OBeu - R Package

There are OpenBudgets.eu fiscal datasets that consist of values as an ordered sequence of

equally spaced time intervals and have an internal structure such as autocorrelation, trend or

seasonal variance. “TimeSeries.OBeu” package developed to meet the tasks of users’ needs

that were described in detail in Deliverable 2.3 - “Requirements for Statistical Analytics and

Data Mining Techniques”. It was built in R Software environment and it's available in Github11.

“TimeSeries.OBeu” package includes functions that automatically analyze the input univariate

time series data using methods and techniques, such as local regressions and models from

arima family, that consider this internal structure in different levels of OpenBudgets.eu fiscal

datasets to extract meaningful characteristics and fit a model to predict the future behavior of

such data. A set of tests are implemented in the input time series data to assess the stationarity

for further analysis. Depending the nature of the time series data and the stationary tests there

are different methods and techniques to extract the most appropriate meaningful

characteristics and fit the best model to predict the future behavior of such data

The input dataset of the main function is a JSON link or a JSON file or a text in JSON format.

The algorithm requires at least the “time”, “amount” parameters to form the time series data

and the “prediction_steps” parameter to predict the future steps. The default order of the model,

is fixed to fit the best model through some conditions and diagnostic tests but the user can also

interact with the selection of the model’s order to fit the data and specify the “order” parameter.

The final returns of this process is a list of parameters in JSON format that are needed to

visualize the time series data with the specified predictions, the decomposition components

and the comparison measures of the input fiscal time series data.

The main components of the results are included in a list with subcomponents that consists of:

● acf.param - the information about the autocorrelation and partial autocorrelation

function of the input data and the residuals after fitting a model (acf.parameters,

pacf.parameters, acf.residuals.parameters, pacf.residuals.parameters).

● decomposition - all the details concerning the decomposition of time series data

(stl.plot, stl.general, residuals_fitted, compare)

● model.param - (model, residuals_fitted, compare)

Example of usage

The user should load the library, specify the function “open_spending.ts” in the endpoint and

the method as “POST”.

The next step is to specify the name of the parameters and their values, described before.

11 https://github.com/okgreece/TimeSeries.OBeu

https://github.com/okgreece/TimeSeries.OBeu

D2.5 – v.1.1

Page 35

Figure 8: OpenCPU Server- Time Series Input Example

The example in the following figure includes these inputs:

Table 4: Input params for Figure 9

Param Name Param Value

json_data

"https://next.openspending.org/api/3/cubes/boost:boo
st-moldova-2005-
2014/aggregate?drilldown=date_2.year&order=adjusted.
sum:desc&pagesize=2000"

time "date_2.year"

amount "executed.sum"

prediction_steps 3

The HTTP request options return the results in the right panel:

“/ocpu/tmp/x060c100f21/R/.val” . The option with “.val” includes the desired results.

D2.5 – v.1.1

Page 36

Figure 9: OpenCPU Server - Time Series Request Example

The output of this process are the parameters described before in JSON format, that will be

used further and consist the inputs for visualizations.

D2.5 – v.1.1

Page 37

Figure 10: OpenCPU Server - Snapshot of Time Series Output Example

4.2.3 Cluster.OBeu - R Package

“Cluster.OBeu” package is developed to find patterns of budget data and divide them into

groups of similar observations (clusters). There are various algorithms available that differ

significantly in their notion of how to form and define a cluster, and depending the nature of the

problem to be solved there is an automated process that selects the appropriate clustering

algorithm and number of clusters.

This package provides the needed parameters to visualize the results to meet the tasks of

users’ needs that were described in detail in Deliverable 2.3 - “Requirements for Statistical

Analytics and Data Mining Techniques”. It was built in R Software environment and it's

available in Github 12.

There are different clustering models to be selected through an evaluation process. The user

should define the “dimensions”, “measured.dim” and “amount” parameters to form the structure

of cluster data. This package includes functions13 that automatically analyzes the input cluster

12 https://github.com/okgreece/Cluster.OBeu
13 https://github.com/okgreece/Cluster.OBeu/blob/master/R/cl.analysis.r

https://github.com/okgreece/Cluster.OBeu
https://github.com/okgreece/Cluster.OBeu/blob/master/R/cl.analysis.r

D2.5 – v.1.1

Page 38

data. The clustering algorithm, the number of clusters and the distance metric of the clustering

model are set to the best selection using internal and stability measures. The end user can

also interact with the cluster analysis and these parameters by specifying the

“cl.method”,“cl.num” and “cl.dist” parameters respectively.

The final returns are the parameters needed for visualizing the cluster data depending on the

selected algorithm and the specification parameters, as long as some comparison measure

matrices.

The main components of the result are a list that consists of:

● cl.meth - Label of the clustering algorithm.

● clust.numb - The number of clusters.

● data.pca - The principal components to visualize the input data.

● modelparam - The results of this parameter depend of the selected clustering model.

Example of usage

The user should load the library, specify the function “open_spending.ts” in the endpoint and

the method as “POST”.

The next step is to specify the name of the parameters and their values, described before.

Figure 11: OpenCPU Server - Cluster Analysis Input Example

The example in the following figure includes these inputs:

Table 5: Input params for Figure 12

Param Name Param Value

D2.5 – v.1.1

Page 39

json_data

"http://ws307.math.auth.gr/rudolf/public/api/3/cubes
/budget-kalamaria-expenditure-
2016__87f97/aggregate?drilldown=budgetPhase.prefLabe
l%7CadministrativeClassification.prefLabel&aggregate
s=amount.sum&pagesize=150"

dimensions "administrativeClassification.prefLabel"

amounts "amount.sum"

measured.dim "budgetPhase.prefLabel"

cl.method "pam"

The HTTP request options return the results in the right panel

“/ocpu/tmp/x093a4b4254/R/.val” . The option with “.val” includes the desired results.

Figure 12: OpenCPU Server - Cluster Analysis Request Example

The output of this process are the parameters described before in JSON format, that will be

used further and consist the inputs for visualizations.

D2.5 – v.1.1

Page 40

Figure 13: OpenCPU Server - Snapshot of Time Series Output Example

4.3 Outlier_dm Lib - Fraunhofer Server

The main server with DAM (Fraunhofer server) also processes data mining requests locally.

The outlier_dm14 package is used for outlier-detection based on LOF15. This data mining tool

developed following Fleischhacker, et al. (2014) was described in Deliverable D2.4. We

describe its interface as follows:

4.3.1 Input

Input must be a CSV file: the first row is dimension names, the second row indicates which

column is the target, from the third row is the observations, as illustrated in following figure:

14 https://github.com/openbudgets/outlier_dm
15 LOF - Local Outliers Factors based on Subpopulation

https://github.com/openbudgets/outlier_dm

D2.5 – v.1.1

Page 41

Figure 14: Structure of the input CSV to outlier-detection based on LOF

The first row is the dimensions of the dataset, the second indicates ‘sum’ is the target, from

the third row is the observations.

4.3.2 Main Function

The main function is:

detect_outliers_subpopulation_lattice(filename, output='Result',

output_path = '', full_output=False, delimiter=',', quotechar='|',

limit=25000, outlier_method='Outlier_LOF', min_population_size=30,

threshold=3, threshold_avg=3, num_outliers=25, k=5)

The meaning of the main parameters are described in Table 6.

Table 6: The meaning of the main parameters of the main function of outlier detection based LOF

Parameter Description Default

outlier_method Specifies which outlier method to use on the
vertices of the lattice (1D outlier step on target
attribute).

'Outlier_LOF'

min_population_size Minimum population size for a subpopulation
in the lattice.

30

threshold Threshold for outputting an item as outlier (in
a subpopulation).

3

threshold_avg Threshold for outputting an item as outlier
(average outlier score). In lattice structure,
each sub population has different scores

1.8

num_outliers Output the top number outliers (user want 25
outliers)

25

D2.5 – v.1.1

Page 42

k LOF method specific parameter specifying
the number of neighbors used to calculate the
local densities.

5

output file name of the output 'Result'

output_path path of the output file ''

4.3.3 Output

Output is also a CSV file. Its first row indicates whether a column is an ‘item’ or ‘feature’, or

‘target’, or the outlier score. The second row indicates the corresponding name of a feature.

From the third is the observations. Sample output structure is illustrated in Figure 15.

Figure 15: Sample of the output CSV of the outlier detection based on LOF

D2.5 – v.1.1

Page 43

5 Conclusion and Future Work

In this deliverable we summarized the information about interfaces of the data mining tools

developed for data mining and analysis described in deliverable D2.4.

The main interface for integration into the OpenBudgets.eu infrastructure is the interface of

DAM (Data Analysis and Mining) - described in chapter 2. The API endpoint of DAM is available

at: http://dam-obeu.iais.fraunhofer.de/

The data mining tools are available not only using the DAM API, but also using the proprietary

interfaces with more (specific) functionality. The tools are currently running on three servers -

UEP EasyMiner server, OKFGR OpenCPU server and the main Fraunhofer DAM server -

described in chapter 4. This chapter contains description of external as well as internal APIs

available for developers. Some data mining packages written for the R system are also

described.

For some data mining algorithms it is necessary to discretize the data values. The

discretization developed for OpenBudgets.eu is available as part of EasyMiner (for rule or

outlier detection algorithms) or as discretization using SPARQL - described in chapter 3.

In the future development, the integration with visualisation tools will be completed. The data

mining and data analysis tools should be also tested within the Large Scale Trials.

http://dam-obeu.iais.fraunhofer.de/

D2.5 – v.1.1

Page 44

References

Fayyad, U. M. and Irani, K. B. (1992), On the handling of continuous-valued attributes in

decision tree generation, Machine learning 8, pp. 87-102.

Fleischhacker, et al. (2014). Paulheim, H. Bryl, Völker, J., Bizer, Ch. Detecting Errors in

Numerical Linked Data using Cross-Checked Outlier Detection. In: 13th International Semantic

Web Conference, pp 357-372, Riva del Garda, Italy, October, 2014. Proceedings, Part I, pp.

19-23.

Liu B. et al. (1998), Hsu, W. and Ma, Y., Integrating classification and association rule mining,

in: KDD'98: Proceedings of the fourth international conference on Knowledge Discovery and

Data mining, pp. 80-86.

OpenBudgets.EU (2016), Deliverable D2.3 - Requirements for Statistical Analytics and Data

Mining, https://drive.google.com/file/d/0Bx9zPWPFoVRaR2Rrb1I2d21rZTQ/view

OpenBudgets.EU (2017), Deliverable D2.4 - Data Mining and Statistical Analytics Techniques,

https://drive.google.com/file/d/0Bx9zPWPFoVRaYlY0YktQNVFmdkU/view

https://drive.google.com/file/d/0Bx9zPWPFoVRaR2Rrb1I2d21rZTQ/view
https://drive.google.com/file/d/0Bx9zPWPFoVRaYlY0YktQNVFmdkU/view

D2.5 – v.1.1

Page 45

Source Codes of Described Software

https://github.com/openbudgets/DAM

https://github.com/okgreece/DescriptiveStats.OBeu

https://github.com/okgreece/TimeSeries.OBeu

https://github.com/okgreece/Cluster.OBeu

https://github.com/KIZI/EasyMiner

https://github.com/jindrichmynarz/discretize-sparql

https://github.com/jaroslav-kuchar/fpmoutliers

https://github.com/openbudgets/outlier_dm

https://github.com/openbudgets/DAM
https://github.com/okgreece/DescriptiveStats.OBeu
https://github.com/okgreece/TimeSeries.OBeu
https://github.com/okgreece/Cluster.OBeu
https://github.com/KIZI/EasyMiner
https://github.com/jindrichmynarz/discretize-sparql
https://github.com/jaroslav-kuchar/fpmoutliers
https://github.com/openbudgets/outlier_dm

