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Abstract:  

In this deliverable we describe the interfaces of the OpenBudgets.eu components for data 

mining and statistical analysis, already described in Deliverable 2.4. Dependently on the 

nature of the components, the functionalities are available via API endpoint, UI or via direct 

integration into other systems (for example Python modules or R packages). 

The information in this document reflects only the author’s views and the European Community is not liable for any use that 

may be made of the information contained therein. The information in this document is provided “as is” without guarantee or 

warranty of any kind, express or implied, including but not limited to the fitness of the information for a particular purpose. The 

user thereof uses the information at his/ her sole risk and liability. 
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Executive Summary 

 

In this deliverable, the authors describe the interfaces of the OpenBudgets.eu components for 

data mining and statistical analysis described in previous Deliverable 2.4. Dependently on the 

nature of the components, the functionalities are available via API endpoint, UI or via direct 

integration into other systems (for example Python modules or R packages). 

The main part of this deliverable contains a description of software interfaces of components. 

For each component, it is provided a short description of the functionality, information about 

the implementation and the description of both - outer interface and internal architecture of the 

component. 

The document is structured as follows: Chapter 2 describes the interfaces of DAM; Chapter 3 

describes the interfaces of data pre-processing components; Chapter 4 describes the 

interfaces of data mining components running at the three data mining servers, the OKFGR 

server, UEP server, and Fraunhofer server. For complex data mining services, we also present 

the internal architectures.  
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Abbreviations and Acronyms 

  

WP Work Package 

OS OpenSpending 

OBEU OpenBudgets.eu 

OKGR Open Knowledge Greece 

UEP University of Economics, Prague 
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1 Introduction 

This deliverable consists in interfaces of data mining and analytical tools mainly produced in 

the context of task T2.4 and also in testing the tools (software components). This content of 

this deliverable follows the previously submitted deliverable D2.4. We describe the functional 

interfaces of the data analysis and mining tools and the functional communication interfaces 

with front-end users. General issues on graphical user interfaces are reported in deliverables 

of WP3, graphical interfaces of data mining are presented in this deliverable.  

To achieve the extensibility of data mining services, we use the distributed architecture. That 

is, data mining algorithms are allowed to be processed in different locations. Currently, we 

have three locations: Thessaloniki (the OKFGR server in Greece), Prague (the UEP server in 

Czech), Sankt Augustin (the Fraunhofer server in Germany). New data mining services can be 

easily integrated into the existing platform.  

The data mining service receives requests from Indigo-user interfaces, forwards the requests 

to one or more of the three possible servers, and returns the results back to Indigo and its 

graphical user interface. Functionally, the Data Analysis and Mining (DAM) module receives 

requests from Indigo, performs some data pre-processing, sends the pre-processed data 

mining requests to one of the data mining servers, and publishes the results at DAM end-point 

for Indigo to fetch.  

The rest of the document is structured as follows: Chapter 2 describes the interfaces of DAM; 

Chapter 3 describes the interfaces of data pre-processing components; Chapter 4 describes 

the interfaces of data mining components running at the three data mining servers, the OKFGR 

server, UEP server, and Fraunhofer server. The components are listed in Table 1. For complex 

data mining services, we also present the internal architectures. 

Table 1: Data mining module and its interfaces 

Data Mining Module Interfaces Provided 
by server 

Chapters 

Descriptive statistics DescriptiveStats.OBeu - R package OKFGR 4.2.1 

Time series analysis, 
predictions 

TimeSeries.OBeu - R package OKFGR 4.2.2 

Clustering and Similarity 
learning 

Cluster.OBeu - R package OKFGR 4.2.3 

Rule/pattern mining EasyMiner API 
EasyMiner UI 
EasyMiner Services Internal APIs 

UEP 4.1.2 
4.1.4 
4.1.1 

Outlier/anomaly detection EasyMiner API 
jaroslav-kuchar/fpmoutliers - R package 
outlier_dm - python module  

UEP 
 
Fraunhofer 

4.1.4 
4.1.5 
4.3 
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2 The Interface of Data Analysis and Mining (DAM) 

Data analysis and mining modules of the OBEU project are located in three places: (1) UEP 

server, (2) OKFGR server, (3) Fraunhofer server. The interface of Data Analysis and Mining 

(DAM)1 provides a unified functional interface to process users’ requests. The DAM is 

implemented using Python Flask. The DAM architecture and the functional communication with 

other modules are illustrated in Figure 1.  

 

Figure 1: Architecture of DAM and its functional communication with other modules 

 

                                                
1 https://github.com/openbudgets/DAM  

https://github.com/openbudgets/DAM
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2.1 Functional Interfaces of DAM  

The root DAM endpoint is currently located at the Fraunhofer server and publicly reachable 

at the following URL: http://dam-obeu.iais.fraunhofer.de/, as illustrated in Figure 2. 

 

Figure 2: Endpoint of DAM2 

The endpoint of each specific data mining task (algorithm) is named according to its function 

name. The mechanism of forwarding the requests to different servers is transparent to the end-

users. Users do not know by which server the task is processed. All the endpoints are listed in 

Table 2. 

Table 2: List of data mining endpoints and the processing place 

Data mining function End-point Processing place  

statistics http://dam-obeu.iais.fraunhofer.de/statistics  OKFGR server 

time series http://dam-obeu.iais.fraunhofer.de/time_series  OKFGR server 

comparative analysis  http://dam-obeu.iais.fraunhofer.de/KPI  OKFGR server 

outlier-detection (LOF) http://dam-
obeu.iais.fraunhofer.de/outlier_detection/LOF  

Fraunhofer server 

outlier-detection 
(FQR) 

http://dam-
obeu.iais.fraunhofer.de/outlier_detection/FQR  

UEP server 

rule-mining http://dam-obeu.iais.fraunhofer.de/rule_mining UEP server 

 

                                                
2 This is the simplest way how to check whether DAM server works. 

http://dam-obeu.iais.fraunhofer.de/
http://dam-obeu.iais.fraunhofer.de/statistics
http://dam-obeu.iais.fraunhofer.de/time_series
http://dam-obeu.iais.fraunhofer.de/KPI
http://dam-obeu.iais.fraunhofer.de/outlier_detection/LOF
http://dam-obeu.iais.fraunhofer.de/outlier_detection/LOF
http://dam-obeu.iais.fraunhofer.de/outlier_detection/FQR
http://dam-obeu.iais.fraunhofer.de/outlier_detection/FQR
http://dam-obeu.iais.fraunhofer.de/rule_mining
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2.2 Communication Interface with UEP   

2.2.1 Data Flow Inside DAM and uep_dm Module 

The uep_dm module provides a unified interface for DAM to send data mining requests to the 

UEP server.  

The DAM end-point of rule-mining is 

 http://dam-obeu.iais.fraunhofer.de/rule_mining 

The data format, which DAM receives from Indigo, is in JSON format, while the UEP server 

needs CSV format. DAM will do data-preprocessing to transform JSON into CSV, construct a 

data mining request based on the format required by the UEP server, and send both the data 

and mining request to UEP server. Parameters required by the UEP server are as follows.  

1. Set default value 

○ apiURL 

■ constant value which is the easymining server URL 

■ CONSTANT 

■ value: https://br-dev.lmcloud.vse.cz/easyminercenter/api 

○ apiKEY  

■ unique Key bound to user, for the identify of task 

■ default value 

■ value: <your api Key> 

○ taskName 

■ UEP server runs several tasks, this is to identify which task user request. 

■ CONSTANT 

■ value: simple 

○ outputFormat  

■ CONSTANT 

■ json 

○ antecedentColumns 

■ default value 

■ value: [] 

○ consequentColumns 

■ default value 

■ value: ["amount.sum"] 

○ minConfidence 

■ default value 

■ value: 0.7 

○ minSupport 

■ default value 

■ value: 0.1 

○ csvSeparator 

■ default value 

http://dam-obeu.iais.fraunhofer.de/
http://dam-obeu.iais.fraunhofer.de/
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■ value: , 

○ csvEncoding 

■ default value 

■ value: utf8 

 

Data-set is sent by Indigo with a link, such as: http://dam-

obeu.iais.fraunhofer.de/sample-data/aggregate.json 

This link points to the data-set in the JSON format with the parameter name 

“BABBAGE_FACT_URI” or “BABBAGE_AGGREGATE_URI”. 

 

2. Get “filename” parameter 

○ default: http://dam-obeu.iais.fraunhofer.de/sample-data/aggregate.json  

○ get from BABBAGE_FACT_URI 

○ get from BABBAGE_AGGREGATE_URI 

As the EasyMiner API requires CSV data format as input, a preprocessing step is applied to 

the JSON source.  

 

3. Construct input CSV by “filename” 

○ from JSON file to CSV by preprocessing 

○ get name “inputCSVFileName” 

Now we have the default values from step 1 and the CSV file from step 3 which is actually from 

the source in step 2. We can send these parameters to the package uep_dm, calling the 

function send_request_to_UEP_server. 

 

4. Call send_request_to_UEP_server with parameter “inputCSVFileName” and all 

parameters. 

○ job = q_dm.enqueue_call(func=uep_dm.send_request_to_UEP_server, 

args=[inputCSVFileName,taskName, apiURL,apiKEY, 

outputFormat,antecedentColumns, consequentColumns,minConfidence,  

minSupport,csvSeprator,csvEncoding], result_ttl=5000) 

Then, we are jumping from DAM to uep_dm module, inside the 

send_request_to_UEP_server function, the processing flow is as follows. First step is the 

upload of the CSV file to the UEP server. 

 

5. Upload CSV file to UEP server use upload_data_set 

○ parameter 

■ csv_file  

■ csv_separator 

■ csvEncoding 

○ POST URL 

■ requests.post(API_URL + '/datasources?separator=' + 

urllib.parse.quote(csv_separator) + '&encoding=' + csvEncoding 

http://dam-obeu.iais.fraunhofer.de/sample-data/aggregate.json
http://dam-obeu.iais.fraunhofer.de/sample-data/aggregate.json
http://dam-obeu.iais.fraunhofer.de/sample-data/aggregate.json
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+ '&type=limited&apiKey=' + API_KEY, files=files, 

headers=headers) 

○ get “dataSourceId”  

Then second step is to create the miner instance and create the identification for the CSV 

dataset. 

6. Create data mining task by create_miner 

○ parameter 

■ dataSourceId  

■ minerName 

■ apiURL 

■ apiKey 

○ POST URL 

■ requests.post(apiURL + "/miners?apiKey=" + apiKey, 

headers=headers, data=json_data.encode()) 

○ get “minerId” 

 

7. Get data column names by preprocess_data_fields_to_attributes 

While the “taskName” parameter is “simple”, that means the task is a rule mining task, call 

define_data_mining_task to send all requirement of the task to server. Inside the function, 

it will first compose a JSON file json_data with some parameters like below, then post this 

json_data to server. 

 

8. Start task by define_data_mining_task 

○ parameter 

■ apiUrl, apiKey, taskName, minerId, minerName, 

antecedentColumns, consequentColumns, 

attributesColumnsMap,minConfidence, minSupport 

○ json_data = json.dumps({"miner": minerId, 

                        "name": minerName, 

                        "limitHits": 1000, 

                        "IMs": [ 

                          {   

                                    "name": "CONF", 

                                         "value": minConfidence 

                                   },   

                                   {   

                                    "name": "SUPP", 

                                         "value": minSupport 

                                   } 

                                ], 

                        "antecedent": antecedent, 

                        "consequent": consequent 

                       }) 

○ POST URL 
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■ requests.post(apiUrl + "/tasks/"+taskName+"?apiKey=" + apiKey, 

headers=headers, data=json_data.encode()) 

○ get “task_id” 

After we get the “task_id”, we can call the final function export_rules_in_JSON, inside this 

function, it will start the task on server and then get response. 

 

9. Get result from server by export_rules_in_JSON 

○ start task 

○ get result 

○ check result by URL 

 

2.2.2 Sample Usage 

Suppose a user chooses (1) a dataset pointed by the link: 

http://ws307.math.auth.gr/rudolf/public/api/3/cubes/budget-kilkis-

expenditure-

2015__74025/aggregate?drilldown=administrativeClassification.prefLabel%7Cec

onomicClassification.prefLabel%7CbudgetPhase.prefLabel&aggregates=amount.su

m  

and (2) rule-mining as the data mining service.  

The communication interface between Indigo and DAM is that Indigo knows that the DAM end-

point for rule mining, which is  http://dam-obeu.iais.fraunhofer.de/rule_mining , and 

that the link of the dataset shall be stored in BABBAGE_FACT_URI or BABBAGE_AGGREGATE_URI  

variable.  

Indigo can send the following curl command to DAM. 

curl -H "Content-Type:application/json; charset=UTF-8"  --requst POST 

'http://dam-

obeu.iais.fraunhofer.de/rule_mining?BABBAGE_FACT_URI=http://ws307.math.auth

.gr/rudolf/public/api/3/cubes/budget-kilkis-expenditure-

2015__74025/aggregate?drilldown=administrativeClassification.prefLabel%7Cec

onomicClassification.prefLabel%7CbudgetPhase.prefLabel&aggregates=amount.su

m'   

When DAM receives the above request, it will first do data pre-processing. In this case, it will 

extract data from the link and save the data in a CSV file. Then, it will call the UEP interface, 

push a new task in the job-queue, and create an endpoint for Indigo to fetch results. The 

endpoint has the format: http://dam-obeu.iais.fraunhofer.de/results/<job-id>, for 

example: http://dam-obeu.iais.fraunhofer.de/results/3ffecc31-e14a-4289-aee7-

833f3fdebc28  

Indigo can fetch the data mining result through a curl command: 

http://dam-obeu.iais.fraunhofer.de/outlier_detection/LOF/sample?BABBAGE_FACT_URI=http://ws307.math.auth.gr/rudolf/public/api/3/cubes/budget-kilkis-expenditure-2015__74025/aggregate?drilldown=administrativeClassification.prefLabel%7CeconomicClassification.prefLabel%7CbudgetPhase.prefLabel&aggregates=amount.sum
http://dam-obeu.iais.fraunhofer.de/outlier_detection/LOF/sample?BABBAGE_FACT_URI=http://ws307.math.auth.gr/rudolf/public/api/3/cubes/budget-kilkis-expenditure-2015__74025/aggregate?drilldown=administrativeClassification.prefLabel%7CeconomicClassification.prefLabel%7CbudgetPhase.prefLabel&aggregates=amount.sum
http://dam-obeu.iais.fraunhofer.de/outlier_detection/LOF/sample?BABBAGE_FACT_URI=http://ws307.math.auth.gr/rudolf/public/api/3/cubes/budget-kilkis-expenditure-2015__74025/aggregate?drilldown=administrativeClassification.prefLabel%7CeconomicClassification.prefLabel%7CbudgetPhase.prefLabel&aggregates=amount.sum
http://dam-obeu.iais.fraunhofer.de/outlier_detection/LOF/sample?BABBAGE_FACT_URI=http://ws307.math.auth.gr/rudolf/public/api/3/cubes/budget-kilkis-expenditure-2015__74025/aggregate?drilldown=administrativeClassification.prefLabel%7CeconomicClassification.prefLabel%7CbudgetPhase.prefLabel&aggregates=amount.sum
http://dam-obeu.iais.fraunhofer.de/outlier_detection/LOF/sample?BABBAGE_FACT_URI=http://ws307.math.auth.gr/rudolf/public/api/3/cubes/budget-kilkis-expenditure-2015__74025/aggregate?drilldown=administrativeClassification.prefLabel%7CeconomicClassification.prefLabel%7CbudgetPhase.prefLabel&aggregates=amount.sum
http://dam-obeu.iais.fraunhofer.de/rule_mining
http://dam-obeu.iais.fraunhofer.de/results/
http://dam-obeu.iais.fraunhofer.de/results/3ffecc31-e14a-4289-aee7-833f3fdebc28
http://dam-obeu.iais.fraunhofer.de/results/3ffecc31-e14a-4289-aee7-833f3fdebc28
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curl -H "Host:sub.domain.com" http://dam-

obeu.iais.fraunhofer.de/results/3ffecc31-e14a-4289-aee7-833f3fdebc28  

If the job has not been finished, DAM will return the ‘wait’ status in a JSON format.  

{"status": "Wait!"} 

If the job is finished, DAM will return the data mining result in the JSON format.  

2.3 Communication Interfaces with Fraunhofer Server and 

OKFGR Server  

DAM provides a unified interface for data mining requests which might be carried out at 

Fraunhofer Server or OKFGR server. The unified interface for data mining request is: 

http://dam-obeu.iais.fraunhofer.de/<task>[/subtask]  

We provide two examples as follows.  

2.3.1 Example: Communication with OKFGR server 

Suppose a user chooses:  

1. a JSON dataset pointed by the link  

2. dimensions as follows: 

functional_classification_2.Function|functional_classification_2.Code 

3. 'Revised' amount,  

4. coef.outl value is 0.8,  

5. set box.outliers = TRUE,  

6. box.wdth value is 0.2,  

7. 'spearman' method for cor.method for statistic analysis. 

The communication interface between Indigo and DAM is that Indigo knows that the DAM end-

point for statistical analysis, which is: 

http://dam-obeu.iais.fraunhofer.de/statistics, 

and that the link of the dataset shall be stored in BABBAGE_FACT_URI or 

BABBAGE_AGGREGATE_URI  variable. Other variables are: dimensions, amount, coef.outl, 

boxxoutliers, box.wdth, cor.method. 

Indigo can send the following curl command to DAM. 

curl -H "Content-Type:application/json; charset=UTF-8"  --requst POST 

'http://dam-

obeu.iais.fraunhofer.de/statistics?json_data=sample_json_link_openspending&

dimensions='functional_classification_2.Function|functional_classification_

2.Code'&amount='Revised'&coef.outl=0.8&box.outliers=TRUE&box.wdth=0.2&cor.m

ethod='spearman'  

http://dam-obeu.iais.fraunhofer.de/results/3ffecc31-e14a-4289-aee7-833f3fdebc28
http://dam-obeu.iais.fraunhofer.de/results/3ffecc31-e14a-4289-aee7-833f3fdebc28
http://dam-obeu.iais.fraunhofer.de/results/3ffecc31-e14a-4289-aee7-833f3fdebc28
http://dam-obeu.iais.fraunhofer.de/statistics
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When DAM receives the above request, it will first do data pre-processing. In this case, it will 

extract data from the link and save the data in a CSV file. Then, it will call the OKFGR interface, 

push a new task in the job-queue, and create an endpoint for Indigo to fetch results. The 

endpoint has the format: http://dam-obeu.iais.fraunhofer.de/results/<job-id>, for 

example http://dam-obeu.iais.fraunhofer.de/results/3ffecc31-e14a-4289-aee7-

833f3fdebc28  

Indigo can fetch the data mining result through a curl command: 

curl -H "Host:sub.domain.com" http://dam-

obeu.iais.fraunhofer.de/results/3ffecc31-e14a-4289-aee7-833f3fdebc28  

If the job has not been finished, DAM will return the ‘wait’ status in a JSON format: 

{"status": "Wait!"} 

If the job is finished, DAM will return the data mining result in the JSON format.   

2.3.2 Example: Communication with Fraunhofer Server 

Suppose a user chooses (1) a dataset pointed by the link: 

http://ws307.math.auth.gr/rudolf/public/api/3/cubes/budget-kilkis-

expenditure-

2015__74025/aggregate?drilldown=administrativeClassification.prefLabel%7Cec

onomicClassification.prefLabel%7CbudgetPhase.prefLabel&aggregates=amount.su

m 

and (2) the LOF outlier-detection as the data mining service.  

The communication interface between Indigo and DAM is that Indigo knows that the DAM end-

point for LOF outlier-detection, which is: 

http://dam-obeu.iais.fraunhofer.de/outlier_detection/LOF/sample  

or http://dam-obeu.iais.fraunhofer.de/outlier_detection/LOF, 

and that the link of the dataset shall be stored in BABBAGE_FACT_URI variable.  

Indigo can send the following curl command to DAM: 

curl -H "Host:sub.domain.com" http://dam-

obeu.iais.fraunhofer.de/outlier_detection/LOF/sample?BABBAGE_FACT_URI=http:

//ws307.math.auth.gr/rudolf/public/api/3/cubes/budget-kilkis-expenditure-

2015__74025/aggregate?drilldown=administrativeClassification.prefLabel%7Cec

onomicClassification.prefLabel%7CbudgetPhase.prefLabel&aggregates=amount.su

m  

When DAM receives the above request, it will first do data pre-processing. In this case, it will 

extract data from the link and save the data in a CSV file. Then, it will call the LOF outlier-

detection interface, push a new task in the job-queue, and create an endpoint for Indigo to 

fetch results. The endpoint has the format: 

http://dam-obeu.iais.fraunhofer.de/results/<job-id>, for example: http://dam-

obeu.iais.fraunhofer.de/results/3ffecc31-e14a-4289-aee7-833f3fdebc28  

http://dam-obeu.iais.fraunhofer.de/results/
http://dam-obeu.iais.fraunhofer.de/results/3ffecc31-e14a-4289-aee7-833f3fdebc28
http://dam-obeu.iais.fraunhofer.de/results/3ffecc31-e14a-4289-aee7-833f3fdebc28
http://dam-obeu.iais.fraunhofer.de/results/3ffecc31-e14a-4289-aee7-833f3fdebc28
http://dam-obeu.iais.fraunhofer.de/results/3ffecc31-e14a-4289-aee7-833f3fdebc28
http://dam-obeu.iais.fraunhofer.de/outlier_detection/LOF/sample?BABBAGE_FACT_URI=http://ws307.math.auth.gr/rudolf/public/api/3/cubes/budget-kilkis-expenditure-2015__74025/aggregate?drilldown=administrativeClassification.prefLabel%7CeconomicClassification.prefLabel%7CbudgetPhase.prefLabel&aggregates=amount.sum
http://dam-obeu.iais.fraunhofer.de/outlier_detection/LOF/sample?BABBAGE_FACT_URI=http://ws307.math.auth.gr/rudolf/public/api/3/cubes/budget-kilkis-expenditure-2015__74025/aggregate?drilldown=administrativeClassification.prefLabel%7CeconomicClassification.prefLabel%7CbudgetPhase.prefLabel&aggregates=amount.sum
http://dam-obeu.iais.fraunhofer.de/outlier_detection/LOF/sample?BABBAGE_FACT_URI=http://ws307.math.auth.gr/rudolf/public/api/3/cubes/budget-kilkis-expenditure-2015__74025/aggregate?drilldown=administrativeClassification.prefLabel%7CeconomicClassification.prefLabel%7CbudgetPhase.prefLabel&aggregates=amount.sum
http://dam-obeu.iais.fraunhofer.de/outlier_detection/LOF/sample?BABBAGE_FACT_URI=http://ws307.math.auth.gr/rudolf/public/api/3/cubes/budget-kilkis-expenditure-2015__74025/aggregate?drilldown=administrativeClassification.prefLabel%7CeconomicClassification.prefLabel%7CbudgetPhase.prefLabel&aggregates=amount.sum
http://dam-obeu.iais.fraunhofer.de/outlier_detection/LOF/sample?BABBAGE_FACT_URI=http://ws307.math.auth.gr/rudolf/public/api/3/cubes/budget-kilkis-expenditure-2015__74025/aggregate?drilldown=administrativeClassification.prefLabel%7CeconomicClassification.prefLabel%7CbudgetPhase.prefLabel&aggregates=amount.sum
http://dam-obeu.iais.fraunhofer.de/outlier_detection/LOF/sample?BABBAGE_FACT_URI=http://ws307.math.auth.gr/rudolf/public/api/3/cubes/budget-kilkis-expenditure-2015__74025/aggregate?drilldown=administrativeClassification.prefLabel%7CeconomicClassification.prefLabel%7CbudgetPhase.prefLabel&aggregates=amount.sum
http://dam-obeu.iais.fraunhofer.de/outlier_detection/LOF
http://dam-obeu.iais.fraunhofer.de/outlier_detection/LOF/sample?BABBAGE_FACT_URI=http://ws307.math.auth.gr/rudolf/public/api/3/cubes/budget-kilkis-expenditure-2015__74025/aggregate?drilldown=administrativeClassification.prefLabel%7CeconomicClassification.prefLabel%7CbudgetPhase.prefLabel&aggregates=amount.sum
http://dam-obeu.iais.fraunhofer.de/outlier_detection/LOF/sample?BABBAGE_FACT_URI=http://ws307.math.auth.gr/rudolf/public/api/3/cubes/budget-kilkis-expenditure-2015__74025/aggregate?drilldown=administrativeClassification.prefLabel%7CeconomicClassification.prefLabel%7CbudgetPhase.prefLabel&aggregates=amount.sum
http://dam-obeu.iais.fraunhofer.de/outlier_detection/LOF/sample?BABBAGE_FACT_URI=http://ws307.math.auth.gr/rudolf/public/api/3/cubes/budget-kilkis-expenditure-2015__74025/aggregate?drilldown=administrativeClassification.prefLabel%7CeconomicClassification.prefLabel%7CbudgetPhase.prefLabel&aggregates=amount.sum
http://dam-obeu.iais.fraunhofer.de/outlier_detection/LOF/sample?BABBAGE_FACT_URI=http://ws307.math.auth.gr/rudolf/public/api/3/cubes/budget-kilkis-expenditure-2015__74025/aggregate?drilldown=administrativeClassification.prefLabel%7CeconomicClassification.prefLabel%7CbudgetPhase.prefLabel&aggregates=amount.sum
http://dam-obeu.iais.fraunhofer.de/outlier_detection/LOF/sample?BABBAGE_FACT_URI=http://ws307.math.auth.gr/rudolf/public/api/3/cubes/budget-kilkis-expenditure-2015__74025/aggregate?drilldown=administrativeClassification.prefLabel%7CeconomicClassification.prefLabel%7CbudgetPhase.prefLabel&aggregates=amount.sum
http://dam-obeu.iais.fraunhofer.de/outlier_detection/LOF/sample?BABBAGE_FACT_URI=http://ws307.math.auth.gr/rudolf/public/api/3/cubes/budget-kilkis-expenditure-2015__74025/aggregate?drilldown=administrativeClassification.prefLabel%7CeconomicClassification.prefLabel%7CbudgetPhase.prefLabel&aggregates=amount.sum
http://dam-obeu.iais.fraunhofer.de/outlier_detection/LOF/sample?BABBAGE_FACT_URI=http://ws307.math.auth.gr/rudolf/public/api/3/cubes/budget-kilkis-expenditure-2015__74025/aggregate?drilldown=administrativeClassification.prefLabel%7CeconomicClassification.prefLabel%7CbudgetPhase.prefLabel&aggregates=amount.sum
http://dam-obeu.iais.fraunhofer.de/results/
http://dam-obeu.iais.fraunhofer.de/results/3ffecc31-e14a-4289-aee7-833f3fdebc28
http://dam-obeu.iais.fraunhofer.de/results/3ffecc31-e14a-4289-aee7-833f3fdebc28
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Indigo can fetch the data mining result through a cur command: 

curl -H "Host:sub.domain.com" http://dam-

obeu.iais.fraunhofer.de/results/3ffecc31-e14a-4289-aee7-833f3fdebc28  

If the job has not been finished, DAM will return the ‘wait’ status in a JSON format.  

{"status": "Wait!"} 

If the job is finished, DAM will return the data mining result in the JSON format.  

2.4 Meta-information of Algorithm for Indigo 

To dynamically construct user interface, DAM provides Indigo with meta-information of each 

data mining algorithms. The interface is structured in a JSON file as follows. 

 "<function_name>": { 

 "configurations": { 

    "facts": { 

      "inputs": { 

         "BABBAGE_FACT_URI": { 

           "name": "BABBAGE_FACT_URI", 

           "title": "", 

           "cardinality": <a natural number>, 

           "guess": <boolean>, 

           "required": <boolean>, 

           "type": "URI pointing to a Babbage compliant  

facts API request" 

        } 

     }, 

     "outputs": { 

        "output": { 

           "name": "output", 

           "cardinality": <a natural number>, 

           "type": <value|collection of objects> 

        } 

     }, 

     "prompt": "...", 

     "method": 0, 

     "endpoint": "", 

     "name": "facts", 

     "title": "" 

   } 

 }, 

 "name": "", 

 "title": "", 

 "description": "" 

  } 

http://dam-obeu.iais.fraunhofer.de/results/3ffecc31-e14a-4289-aee7-833f3fdebc28
http://dam-obeu.iais.fraunhofer.de/results/3ffecc31-e14a-4289-aee7-833f3fdebc28
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For example, the metadata information of outlier detection is described as below. 

{ "outlier_detection": { 

 "configurations": { 

    "facts": { 

       "inputs": { 

         "BABBAGE_FACT_URI": { 

           "name": "BABBAGE_FACT_URI", 

           "title": "Data coming from an aggregation", 

           "cardinality": "1", 

           "guess": false, 

           "required": true, 

           "type": "URI pointing to a Babbage compliant 

facts API request" 

        } 

     }, 

     "outputs": { 

        "output": { 

          "name": "output", 

          "cardinality": 1, 

          "type": "collection of objects" 

        } 

     }, 

     "prompt": "Build an aggregate, with a time-related drill-down 

and then enter the prediction steps parameter from the left and click 

on the execute button on top right.", 

     "method": 0, 

     "endpoint": "http://dam-

obeu.iais.fraunhofer.de/outlier_detection/LOF", 

     "name": "facts", 

     "title": "Facts outlier detection" 

   } 

 }, 

 "name": "outlier_detection", 

 "title": "Outlier Detection", 

 "description": "" 

  } 
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3 Interfaces of Data Pre-processing 

3.1 Discretization via SPARQL 

In order to enable discretization of RDF data we implemented a command-line tool that allows 

to discretize numeric literals in RDF via SPARQL. Discretization, which is also known as 

binning, converts continuous numeric values into discrete intervals. This allows to treat 

numbers as categorical data, which is required by some data mining tools. For example, 

discretization is used for association rule mining with EasyMiner (4.1), outlier detection with 

FPM (4.1.5), or tensor factorization with RESCAL.3 While EasyMiner has discretization built in, 

discretization via SPARQL can be incorporated directly in data preprocessing for generic data 

mining tasks. This is why we decided to wrap the EasyMiner-Discretization4 library and allow 

to apply it via SPARQL Update. 

The tool supports three discretization methods: equidistance, equifrequency, and equisize. 

Equidistant discretization creates intervals of the same size, equifrequent discretization 

creates intervals with approximately the same number of members, and equisized 

discretization creates intervals based on minimum support. Equidistant and equifrequent 

discretization requires user to specify the desired integer number of intervals (bins) to 

generate. Equisized discretization requires user to provide the minimum support (∈ (0, 1)) that 

a generated interval must have. 

Application of discretization is guided via a SPARQL Update operation that uses wishful 

thinking. The operation contains a placeholder variable ?interval, to which the tool binds the 

generated intervals by rewriting the operation. This allows to specify many ways in which the 

generated intervals should be used. For example, the intervals can replace the discretized 

numeric literals or they can be inserted as objects of an additional property. Here is an example 

of such operation: 

PREFIX :             <http://example.com/> 
PREFIX obeu-measure: <http://data.openbudgets.eu/ontology/dsd/measure/> 
 
WITH <http://data.openbudgets.eu/resource/dataset/budget-athens-
expenditure-2015> 
DELETE { 
  ?observation obeu-measure:amount ?value . 
} 
INSERT { 
  ?observation :discretizedAmount ?interval . 
} 
WHERE { 
  ?observation obeu-measure:amount ?value . 
} 

                                                
3 https://github.com/mnick/rescal.py 
4 https://github.com/KIZI/EasyMiner-Discretization 

https://github.com/mnick/rescal.py
https://github.com/KIZI/EasyMiner-Discretization


   

 
D2.5 – v.1.1 

Page 21 

In this operation the WHERE clause select the values to discretize, the INSERT clause inserts 

the generated intervals as objects of the :discretizedAmount property, and the DELETE 

clause deletes the original numeric values. In the background, the operation is rewritten to 

paged SELECT queries to fetch the values to be discretized. Once discretization generates the 

intervals, the operation is rewritten to a SPARQL Update operation that implements its 

specified transformation. 

The generated intervals are represented as instances of schema:QuantitativeValue. The 

bounds of the intervals are described using schema:minValue for the lower bound and 

schema:maxValue for the upper bound. Classes from the SemanticScience Integrated 

Ontology5 are used to determine whether the bounds are open or closed. The intervals are 

identified with UUID-based URNs. The following listing shows an example interval. 

@prefix schema: <http://schema.org/> . 
@prefix sio:    <http://semanticscience.org/resource/SIO_> . 
 
<urn:uuid:4E98F3EE-2861-4A4B-A39C-487A7018165E> a schema:QuantitativeValue, 
                                         sio:001254, # Left-closed interval 
                                         sio:001252 ; # Right-open interval 
  schema:minValue 1000 ; 
  schema:maxValue 3000 . 

 

The intervals are loaded into a named graph provided via the graph CLI parameter. If this 

parameter is missing, the tool attempts to guess a named graph to load the interval to. It uses 

the graph specified by WITH, USING, or in the INSERT clause. If no graph is found, the tool asks 

you to provide it explicitly via graph. 

If not all values to be discretized are numeric, the non-numeric values are ignored unless the 

strict CLI parameter is used. In such case the discretization fails if it encounters a non-

numeric value. An example invocation of the tool is shown here: 

discretize_sparql --endpoint http://localhost:8890/sparql-auth \ 
                  --auth dba:dba \ 
                  --update discretize_amounts.ru \ 
                  --method equifrequency \ 
                  --bins 15 \ 
                  --strict 
 
A special treatment is applied if OpenLink Virtuoso6 is used as the queried RDF store. Since 
Virtuoso has limited support for decimal digits in xsd:decimal, the tool rounds the generated 

intervals to this supported maximum precision to avoid values left outside of the generated 
intervals. 

The tool is released as open source and is available at: 

https://github.com/jindrichmynarz/discretize-sparql 

                                                
5 http://semanticscience.org 
6 https://virtuoso.openlinksw.com 

https://github.com/jindrichmynarz/discretize-sparql
http://semanticscience.org/
https://virtuoso.openlinksw.com/
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4 Interfaces of the Three Data Mining Servers 

This chapter contains description of interfaces of the three currently used data mining servers: 

4.1 UEP EasyMiner Server, 4.2 OKFGR OpenCPU Server and 4.3 Outlier_dm lib at Fraunhofer 

Server. 

4.1 EasyMiner - UEP Data Mining Server 

EasyMiner is a complex web data mining system for data mining of association rules and outlier 

detection. The system is being developed at the University of Economics, Prague. 

The system is based on a web service architecture supporting the individual steps of the data 

mining process (data upload, data preprocessing, execution of data mining algorithms, 

testing). 

The end user does not have to use all the individual web services and their APIs. In the 

integration component, EasyMinerCenter, there is a complex API supporting the full 

functionality. There is also a GUI available (see Figure 4). 

4.1.1 Architecture & Internal APIs 

Data mining system EasyMiner is based on connection of RESTful web services architecture. 

This architecture is shown in Figure 3. The main components are EasyMinerCenter, 

EasyMiner-Data, EasyMiner-Preprocessing, EasyMiner-Miner and EasyMiner-Scorer. The 

frontend component (service) is EasyMinerCenter, other components belong to the backend. 

Each component has documented RESTful API. In case of need, it is able to call directly a 

selected backend service. The API documentation is available in Swagger form. In the 

following text, the paths to the documentation are written for the default installation 

architecture7 of EasyMiner. 

                                                
7 The default installation is available using Docker images - see https://github.com/kizi/easyminer  

https://github.com/kizi/easyminer
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Figure 3: EasyMiner - Architecture of services 

EasyMinerCenter 

● Front the user's perspective, this is the only interface, with which the user must 

communicate. This component provides graphical user interface (usable in each 

modern web browser) and RESTful API for integration with other systems (or simple 

user scripting). 

● The main functionality of this component is integration of other (back-end) services and 

user and task management. 

● UI:    <server>/easyminercenter 

● API:   <server>/easyminercenter/api 

● API documentation:  <server>/easyminercenter/api 

EasyMiner-Data 

● Service for management of data sources. This service supports upload data in CSV or 

RDF and its storage into database. The data are stored in database - MySQL 

(MariaDB) or Hive. 

● API:   <server>/easyminer-data/api/v1 

● API documentation: <server>/easyminer-data/index.html 

EasyMiner-Preprocessing 

● The preprocessing service supports creation of datasets for data mining. It takes data 

fields from datasource stores using EasyMiner-Data and prepares data fields using one 

of these preprocessing algorithms: each value-one bin, intervals enumeration, nominal 

enumeration, equidistant intervals, equisized intervals. 
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● This service also provides the “hashing” functionality for support of special characters 

in data values within the run of data mining tools in EasyMiner-Miner. 

● API:   <server>/easyminer-preprocessing/api/v1 

● API documentation: <server>/easyminer-preprocessing/index.html 

EasyMiner-Miner 

● The service EasyMiner-Miner support the run of data mining algorithms for data mining 

of association rules (optionally with pruning) and outlier detection. The service executes 

algorithms Apriori, FP-Growth, rCBA and fpmoutlier (described in deliverable D2.4). 

● API:   <server>/easyminer-miner/api/v1 

● API documentation: <server>/easyminer-miner/index.html 

EasyMiner-Scorer 

● EasyMiner-Scorer is a web service for testing of classification models based on 

association rules. 

● API:   <server>/easyminer-scorer/v0.3/ 

● API documentation: <server>/easyminer-scorer/index.html 

4.1.2 Association Rule Mining API 

For usage of API, the user must have an own user account in the EasyMinerCenter. For the 

purpose of authentication, each user account has an own API key. The API key can be 

generated using GUI or using a POST request to API: 

<server>/easyminercenter/api/users 

An example of usage of the association rule mining API (written in Python) is available on the 

URL: http://www.easyminer.eu/api-tutorial  

Data mining process using the main EasyMiner API endpoint8: 

1. Upload data in CSV 

○ the data can optionally be zipped 

○ suitable for files of limited size (up to 50MB), for larger files, the user must use a 

cyclical post call directly on data service 

headers = {"Accept": "application/json"} 

files = {("file", open(CSV_FILE, 'rb'))} 

r = requests.post(API_URL + '/datasources?separator=' + 

urllib.parse.quote( 

    CSV_SEPARATOR) + '&encoding=' + CSV_ENCODING + 

'&type=limited&apiKey=' + API_KEY, files=files, headers=headers) 

datasource_id = r.json()["id"] 

2. Create miner 

headers = {'Content-Type': 'application/json', "Accept": 

"application/json"} 

                                                
8 EasyMiner API endpoint is currently available at: https://br-
dev.lmcloud.vse.cz/easyminercenter/api  

http://www.easyminer.eu/api-tutorial
https://br-dev.lmcloud.vse.cz/easyminercenter/api
https://br-dev.lmcloud.vse.cz/easyminercenter/api
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json_data = json.dumps({"name": "TEST MINER", "type": "cloud", 

"datasourceId": datasource_id}) 

r = requests.post(API_URL + "/miners?apiKey=" + API_KEY, headers=headers, 

data=json_data.encode()) 

miner_id = r.json()["id"] 

 

3. Preprocess data – generate data fields from data fields stored in a data source  

○ the user defines preprocessing algorithm for each attribute; it is also possible to 

generate more attributes from one data field 

headers = {'Content-Type': 'application/json', "Accept": 

"application/json"} 

r = requests.get(API_URL + '/datasources/' + str(datasource_id) + 

'?apiKey=' + API_KEY, headers=headers) 

datasource_columns = r.json()['column'] 

attributes_columns_map = {} 

for col in datasource_columns: 

    column = col["name"] 

    json_data = json.dumps( 

        {"miner": miner_id, "name": column, "columnName": column, 

"specialPreprocessing": "eachOne"}) 

    r = requests.post(API_URL + "/attributes?apiKey=" + API_KEY, 

headers=headers, data=json_data.encode()) 

    if r.status_code != 201: 

        break  # error occured 

    attributes_columns_map[column] = r.json()['name']  # map of created 

attributes (based on the existing data fields) 

 

4. Define association rule mining task 

○ attributes for the antecedent and consequent parts of association rules (with any value 

or with a fixed value) 

○ definition of threshold values of requested interest measures (confidence, support, 

lift) 

# define data mining task 

antecedent = [] 

consequent = [] 

 

# prepare antecedent pattern 

if len(ANTECEDENT_COLUMNS): 

    # add to antecedent only fields defined in the constant 

    for column in ANTECEDENT_COLUMNS: 

   antecedent.append({"attribute":attributes_columns_map[column]}) 

else: 

    # add to antecedent all fields not used in consequent 
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    for (column, attribute_name) in attributes_columns_map.items(): 

        if not(column in CONSEQUENT_COLUMNS): 

            antecedent.append({"attribute": attribute_name}) 

 

# prepare consequent pattern 

for column in CONSEQUENT_COLUMNS: 

   consequent.append({"attribute": attributes_columns_map[column]}) 

 

    json_data = json.dumps({"miner": miner_id, 

                            "name": "Test task", 

                            "limitHits": 1000, 

                            "IMs": [ 

                                { 

                                    "name": "CONF", 

                                    "value": MIN_CONFIDENCE 

                                }, 

                                { 

                                    "name": "SUPP", 

                                    "value": MIN_SUPPORT 

                                } 

                            ], 

                            "antecedent": antecedent, 

                            "consequent": consequent 

                            }) 

# define new data mining task 

r = requests.post(API_URL + "/tasks/simple?apiKey=" + API_KEY, 

headers=headers, data=json_data.encode()) 

print("create task response code:" + str(r.status_code)) 

task_id = str(r.json()["id"]) 

 

5. Execute the mining task 

r = requests.get(API_URL + "/tasks/" + task_id + "/start?apiKey=" + 

API_KEY, headers=headers) 

while True: 

    time.sleep(1) 

    # check state 

    r = requests.get(API_URL + "/tasks/" + task_id + "/state?apiKey=" + 

API_KEY, headers=headers) 

    task_state = r.json()["state"] 

    print("task_state:" + task_state) 

    if task_state == "solved": 

        break 

    if task_state == "failed": 

        print("task failed executing") 
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        break 

 

6. Export the results (in PMML AssociationModel, GUHA PMML or simple JSON) 

# export rules in JSON format 

headers = {"Accept": "application/json"} 

r = requests.get(API_URL + '/tasks/' + task_id + '/rules?apiKey=' + 

API_KEY, headers=headers) 

task_rules = r.json() 

 

# export of standardized PMML AssociationModel 

r = requests.get(API_URL + '/tasks/' + task_id + 

'/pmml?model=associationmodel&apiKey=' + API_KEY) 

pmml = r.text 

 

# export of GUHA PMML 

r = requests.get(API_URL + '/tasks/' + task_id + 

'/pmml?model=guha&apiKey=' + API_KEY) 

guha_pmml = r.text 
 

The described, main RESTful API of EasyMiner is the integration interface for other software 

tools developed in the OpenBudgets.eu Project. 

The functionality of association rules mining and building of classification models based on 

association rules was completely tested using standard datasets from UCI repository. 

4.1.3 Outlier Detection API 

The outlier detection is integrated with other services of the data mining system EasyMiner. 

The data mining process for outlier detection tasks is described in the following list. The first 

three steps are the same as in the process for association rule mining. It is also possible to 

use the same prepared dataset for both tasks - for outlier detection and also for association 

rule mining. 

1. Upload data in CSV 

2. Create miner 

3. Preprocess data – generate data fields from data fields stored in a data source 

○ the user defines preprocessing algorithm for each attribute 

○ opposite to the association rule mining tasks, it is necessary to create only attributes, 

which should be used for outlier detection task (it is not possible to select only a subset 

of attributes in the task definition) 

4. Define outlier detection mining task 

headers = {'Content-Type': 'application/json', "Accept": 

"application/json"} 

json_data = json.dumps({"miner": miner_id, "minSupport": min_support}) 
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r = requests.post(API_URL + "/outliers-tasks?apiKey=" + API_KEY, 

headers=headers, data=json_data.encode()) 

outlier_task_id = r.json()["id"] 

 

5. Execute the mining task 

r = requests.get(API_URL + "/outliers-tasks/" + outlier_task_id + 

"/start?apiKey=" + API_KEY, headers=headers) 

while True: 

    time.sleep(1) 

    # check state 

    r = requests.get(API_URL + "/outliers-tasks/" + outlier_task_id + 

"/state?apiKey=" + API_KEY, headers=headers) 

    task_state = r.json()["state"] 

    print("task_state:" + task_state) 

    if task_state == "solved": 

        break 

    if task_state == "failed": 

        print("task failed executing") 

        break 

 

6. Read the results 

offset = 0 

limit = 10 

headers = {"Accept": "application/json"} 

r = requests.get(API_URL + '/outliers-tasks/' + outlier_task_id + 

'/outliers?apiKey=' + API_KEY + '&offset=' + offset + '&limit=' + limit, 

headers=headers) 

outliers = r.json()['outlier'] 

 

4.1.4 Association Rule Mining UI 

EasyMiner provides to the users also graphical web user interface. The user can use it in each 

modern web browser. The GUI is available on the URL <server>/easyminercenter. 

Figure 4 shows the “main” UI for data mining of association rules. The full UI is based on 

drag&drop operations. On the right side, there are pallets of data fields (original data columns 

from datasource; A) a and preprocessed attributes (B) usable in association rules. The user 

defines a “pattern” of association rules (C) – dropping the attributes in the antecedent and 

consequent part of the pattern. The results are then shown in the section “Discovered rules” 

(D). In the development of this deliverable, the UI was modified for the support of special and 

non-ASCII characters in names and values of data fields and attributes. 

For this deliverable, it is important, that the main RESTful API endpoint and graphical UI are 

fully compatible. The user can for example define the preprocessing and a "testing" task using 
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UI and then run more tasks using API calls - on the same prepared (preprocessed) datasets, 

collecting the results into one repository.  

 

Figure 4: EasyMiner - User interface for association rule mining 

4.1.5 fpmoutliers - R Package 

This section documents the R implementation of algorithms for detection of outliers based on 

frequent pattern mining. The package is developed on the University of Economics, Prague. 

The current versions supports multiple algorithms for the outlier detection based on frequent 

pattern mining. There are implementations of six existing algorithms as baselines (FPCOF, 

FPOF, LFPOF, MFPOF, WCFPOF, WFPOF) and one innovative approach (FPI).  

All implemented methods require input data as a data frame in R  and parameter minSupport 

- minimum support interest measure. It is the same measure as explained in EasyMiner 

section. Lower value will cause revealing of less frequent patterns in data and improve the 

quality and readability of provided outputs. However, lower values also lead to higher 

complexity of the computation.  

The output is a list that mainly contains outlier scores - one value for each input row from the 

data frame: 

● minSupport - minimum support setting for frequent itemsets mining 

● maxlen - maximum length of frequent itemsets 

● model - frequent itemset model represented as itemsets-class from R arules package 

● scores - outlier/anomaly scores for each observation/row of the input dataframe 

Example of a basic usage for FPI: 

library(fpmoutliers) 

dataFrame <- read.csv(system.file("extdata", "fp-outlier-customer-

data.csv", package = "fpmoutliers")) 

model <- FPI(dataFrame, minSupport = 0.001) 
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dataFrame <- dataFrame[order(model$scores, decreasing = TRUE),] 

print(dataFrame[1,]) # instance with the highest anomaly score 

print(dataFrame[nrow(dataFrame),]) # instance with the lowest anomaly 

score 

The package is also focused on explanations of outlier scores. There is a function 

visualizeInstance(dataFrame, index), where index is index of instance in the data frame 

that we would like to visualize using bar plots. Example of usage: 

library("fpmoutliers") 

dataFrame <- read.csv( 

     system.file("extdata", "fp-outlier-customer-data.csv", package = 

"fpmoutliers")) 

model <- FPI(dataFrame, minSupport = 0.001) 

# sort data by the anomaly score 

dataFrame <- dataFrame[order(model$scores, decreasing = TRUE),] 

visualizeInstance(dataFrame, 1) # instance with the highest anomaly score 

visualizeInstance(dataFrame, nrow(dataFrame)) # instance with the lowest 

anomaly score 

The visual explanations using bar plots are limited by the number of columns in the input 

dataframe. The visualization is suitable up to 6-8 columns. The module also provides 

implementation of textual explanations: describeInstance(dataFrame, model, index), 

where model is the model provided by the outlier detection method (e.g. FPI). The output is a 

list that describes the instance: overall outlier score (parameter score), frequent itemsets that 

match the instance (parameter itemsets) and also provides information about contributions of 

attributes to the overall outlier score (parameter scores): 

library("fpmoutliers") 

dataFrame <- read.csv( 

     system.file("extdata", "fp-outlier-customer-data.csv", package = 

"fpmoutliers")) 

model <- FPI(dataFrame, minSupport = 0.001) 

# sort data by the anomaly score 

dataFrame <- dataFrame[order(model$scores, decreasing = TRUE),] 

# instance with the highest anomaly score 

out <- describeInstance(dataFrame, model, 1) 

# instance with the lowest anomaly score 

out <- describeInstance(dataFrame, model, nrow(dataFrame)) 

Experimental implementation of automatic build. The algorithm uses simple heuristics to 

automatically set optimal values for the minSupport parameter. The output is the same model 

as for other outlier detection implementations. Currently suitable and tested only on small 

datasets: 
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library("fpmoutliers") 

data("iris") 

model <- fpmoutliers::build(iris) 

The tool is released as open source and is available at: 

https://github.com/jaroslav-kuchar/fpmoutliers 

4.2 OpenCPU Server - OKFGR Data Mining Server 

4.2.1 DescriptiveStats.OBeu - R Package 

“DescriptiveStats.OBeu” package was built in R Software environment and it's publicly 

available on Github9. It enables the calculation of descriptive statistical measures in Budget 

data of municipalities across Europe, according to the OpenBudgets.eu data model. It provides 

the parameters of simple visualizations to meet the tasks of users’ needs that were described 

in detail in Deliverable 2.3 - “Requirements for Statistical Analytics and Data Mining 

Techniques”. 

“DescriptiveStats.OBeu” includes functions for measuring central tendency and dispersion of 

numeric variables along with their distributions and correlations and the frequencies of 

categorical variables for a given dataset of the input OpenBudgets.eu fiscal datasets.  

The input dataset of the main function is a JSON link or a JSON file or a text in JSON format. 

There are different parameters that a user could specify (see the package specification) and 

interact with the results, but the at least should be defined the “dimensions”, 

“measured.dimensions” and “amounts” parameters to form the dataset. Next, there is an 

automated process that calculates the basic descriptive measures of tendency and spread, 

boxplot and histogram parameters to describe and visualize the distribution characteristics of 

the desired fiscal dataset. 

The final returns of this process are contained in a list of parameters in JSON format that are 

needed to form summary tables of central tendency and dispersion measures and visualize 

boxplots, histograms, barplots and correlation matrices of the input fiscal data (for further 

details about the package see ds.analysis function10). 

 

                                                
9 https://github.com/okgreece/DescriptiveStats.OBeu  
10 https://github.com/okgreece/DescriptiveStats.OBeu/blob/master/R/ds.analysis.R  

https://github.com/jaroslav-kuchar/fpmoutliers
https://github.com/okgreece/DescriptiveStats.OBeu
https://github.com/okgreece/DescriptiveStats.OBeu/blob/master/R/ds.analysis.R
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Figure 5: OpenCPU Server Interface 

The main parts of the returned result of a process are contained in a list that consists of: 

● Descriptives - the central tendency and spread measures (min, max, range, mean, 

median, quantiles, variance, standard deviation, skewness, kurtosis) 

● Boxplot - boxplot parameters (lo.whisker, lo.hinge, median, up.hinge, 

up.whisker, box.width, lo.out, up.out, n)  

● Histogram - histogram parameters (cuts, counts, normal.curve, mean, median)  

● Frequencies - barplot parameters (frequencies, relative.frequencies)  

● Correlation - correlation matrix (cor.matrix)  

 

Example of usage 

The user should load the library, specify the function “open_spending.ds” in the endpoint and 

the method as “POST”. 

The next step is to specify the name of the parameters and their values, described before. 
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Figure 6: OpenCPU Server - Descriptive Statistics Input Example 

The example in the following figure includes these inputs: 

Table 3: Input params for Figure 7 

Param Name Param Value 

json_data 
"http://next.openspending.org/api/3/cubes/4b6d969e07ef7
a86aa54e539fc127a14:wuppertalhaushalt/facts" 

dimensions "functional_classification_3.Produktgruppe|date_2.Year" 

amounts "Amount" 

 

The HTTP request options return the results in the right panel: 

“/ocpu/tmp/x07b999c660/R/.val”. The option with “.val” includes the desired results.  

 



   

 
D2.5 – v.1.1 

Page 34 

Figure 7: OpenCPU Server- Snapshot of Descriptive Statistics Output Example 

The output of this process are the parameters described before in JSON format. These 

parameters will be used further as the input for the visualizations. 

4.2.2 TimeSeries.OBeu - R Package 

There are OpenBudgets.eu fiscal datasets that consist of values as an ordered sequence of 

equally spaced time intervals and have an internal structure such as autocorrelation, trend or 

seasonal variance. “TimeSeries.OBeu” package developed to meet the tasks of users’ needs 

that were described in detail in Deliverable 2.3 - “Requirements for Statistical Analytics and 

Data Mining Techniques”. It was built in R Software environment and it's available in Github11.  

“TimeSeries.OBeu” package includes functions that automatically analyze the input univariate 

time series data using methods and techniques, such as local regressions and models from 

arima family, that consider this internal structure in different levels of OpenBudgets.eu fiscal 

datasets to extract meaningful characteristics and fit a model to predict the future behavior of 

such data. A set of tests are implemented in the input time series data to assess the stationarity 

for further analysis. Depending the nature of the time series data and the stationary tests there 

are different methods and techniques to extract the most appropriate meaningful 

characteristics and fit the best model to predict the future behavior of such data 

The input dataset of the main function is a JSON link or a JSON file or a text in JSON format. 

The algorithm requires at least the “time”, “amount” parameters to form the time series data 

and the “prediction_steps” parameter to predict the future steps. The default order of the model, 

is fixed to fit the best model through some conditions and diagnostic tests but the user can also 

interact with the selection of the model’s order to fit the data and specify the “order” parameter.  

The final returns of this process is a list of parameters in JSON format that are needed to 

visualize the time series data with the specified predictions, the decomposition components 

and the comparison measures of the input fiscal time series data. 

The main components of the results are included in a list with subcomponents that consists of: 

● acf.param - the information about the autocorrelation and partial autocorrelation 

function of the input data and the residuals after fitting a model (acf.parameters, 

pacf.parameters, acf.residuals.parameters, pacf.residuals.parameters). 

● decomposition - all the details concerning the decomposition of time series data 

(stl.plot, stl.general, residuals_fitted, compare) 

● model.param - (model, residuals_fitted, compare) 

Example of usage 

The user should load the library, specify the function “open_spending.ts” in the endpoint and 

the method as “POST”. 

The next step is to specify the name of the parameters and their values, described before. 

                                                
11 https://github.com/okgreece/TimeSeries.OBeu  

https://github.com/okgreece/TimeSeries.OBeu
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Figure 8: OpenCPU Server- Time Series Input Example 

The example in the following figure includes these inputs: 

Table 4: Input params for Figure 9 

Param Name Param Value 

json_data 

"https://next.openspending.org/api/3/cubes/boost:boo
st-moldova-2005-
2014/aggregate?drilldown=date_2.year&order=adjusted.
sum:desc&pagesize=2000" 

time "date_2.year" 

amount "executed.sum" 

prediction_steps 3 

 

The HTTP request options return the results in the right panel: 

“/ocpu/tmp/x060c100f21/R/.val” . The option with “.val” includes the desired results.  
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Figure 9: OpenCPU Server - Time Series Request Example 

The output of this process are the parameters described before in JSON format, that will be 

used further and consist the inputs for visualizations. 
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Figure 10: OpenCPU Server - Snapshot of Time Series Output Example 

4.2.3 Cluster.OBeu - R Package 

“Cluster.OBeu” package is developed to find patterns of budget data and divide them into 

groups of similar observations (clusters). There are various algorithms available that differ 

significantly in their notion of how to form and define a cluster, and depending the nature of the 

problem to be solved there is an automated process that selects the appropriate clustering 

algorithm and number of clusters.  

This package provides the needed parameters to visualize the results to meet the tasks of 

users’ needs that were described in detail in Deliverable 2.3 - “Requirements for Statistical 

Analytics and Data Mining Techniques”. It was built in R Software environment and it's 

available in Github 12.  

There are different clustering models to be selected through an evaluation process. The user 

should define the “dimensions”, “measured.dim” and “amount” parameters to form the structure 

of cluster data. This package includes functions13 that automatically analyzes the input cluster 

                                                
12 https://github.com/okgreece/Cluster.OBeu  
13 https://github.com/okgreece/Cluster.OBeu/blob/master/R/cl.analysis.r  

https://github.com/okgreece/Cluster.OBeu
https://github.com/okgreece/Cluster.OBeu/blob/master/R/cl.analysis.r
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data. The clustering algorithm, the number of clusters and the distance metric of the clustering 

model are set to the best selection using internal and stability measures. The end user can 

also interact with the cluster analysis and these parameters by specifying the 

“cl.method”,“cl.num” and “cl.dist” parameters respectively. 

The final returns are the parameters needed for visualizing the cluster data depending on the 

selected algorithm and the specification parameters, as long as some comparison measure 

matrices. 

The main components of the result are a list that consists of: 

● cl.meth - Label of the clustering algorithm. 

● clust.numb - The number of clusters. 

● data.pca - The principal components to visualize the input data. 

● modelparam - The results of this parameter depend of the selected clustering model. 

  

Example of usage 

The user should load the library, specify the function “open_spending.ts” in the endpoint and 

the method as “POST”. 

The next step is to specify the name of the parameters and their values, described before. 

 

Figure 11: OpenCPU Server - Cluster Analysis Input Example 

The example in the following figure includes these inputs: 

Table 5: Input params for Figure 12 

Param Name Param Value 
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json_data 

"http://ws307.math.auth.gr/rudolf/public/api/3/cubes
/budget-kalamaria-expenditure-
2016__87f97/aggregate?drilldown=budgetPhase.prefLabe
l%7CadministrativeClassification.prefLabel&aggregate
s=amount.sum&pagesize=150" 

dimensions "administrativeClassification.prefLabel" 

amounts "amount.sum" 

measured.dim "budgetPhase.prefLabel" 

cl.method "pam" 

 

The HTTP request options return the results in the right panel 

“/ocpu/tmp/x093a4b4254/R/.val” . The option with “.val” includes the desired results.  

 

Figure 12: OpenCPU Server - Cluster Analysis Request Example 

The output of this process are the parameters described before in JSON format, that will be 

used further and consist the inputs for visualizations. 
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Figure 13: OpenCPU Server - Snapshot of Time Series Output Example 

4.3 Outlier_dm Lib - Fraunhofer Server 

The main server with DAM (Fraunhofer server) also processes data mining requests locally. 

The outlier_dm14 package is used for outlier-detection based on LOF15. This data mining tool 

developed following Fleischhacker, et al. (2014) was described in Deliverable D2.4. We 

describe its interface as follows: 

4.3.1 Input 

Input must be a CSV file: the first row is dimension names, the second row indicates which 

column is the target, from the third row is the observations, as illustrated in following figure: 

 

 

                                                
14 https://github.com/openbudgets/outlier_dm  
15 LOF - Local Outliers Factors based on Subpopulation 

https://github.com/openbudgets/outlier_dm
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Figure 14: Structure of the input CSV to outlier-detection based on LOF 

The first row is the dimensions of the dataset, the second indicates ‘sum’ is the target, from 

the third row is the observations.  

4.3.2 Main Function 

The main function is:  

detect_outliers_subpopulation_lattice(filename, output='Result', 

output_path = '', full_output=False, delimiter=',', quotechar='|', 

limit=25000, outlier_method='Outlier_LOF',  min_population_size=30, 

threshold=3, threshold_avg=3, num_outliers=25, k=5) 

The meaning of the main parameters are described in Table 6. 

Table 6: The meaning of the main parameters of the main function of outlier detection based LOF 

Parameter Description Default 

outlier_method Specifies which outlier method to use on the 
vertices of the lattice (1D outlier step on target 
attribute). 

'Outlier_LOF' 

min_population_size Minimum population size for a subpopulation 
in the lattice. 

30 

threshold Threshold for outputting an item as outlier (in 
a subpopulation). 

3 

threshold_avg Threshold for outputting an item as outlier 
(average outlier score). In lattice structure, 
each sub population has different scores 

1.8 

num_outliers Output the top number outliers (user want 25 
outliers) 

25 
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k LOF method specific parameter specifying 
the number of neighbors used to calculate the 
local densities. 

5 

output file name of the output 'Result' 

output_path path of the output file '' 

 

 

4.3.3 Output 

Output is also a CSV file. Its first row indicates whether a column is an ‘item’ or ‘feature’, or 

‘target’, or the outlier score. The second row indicates the corresponding name of a feature. 

From the third is the observations. Sample output structure is illustrated in Figure 15. 

 
Figure 15: Sample of the output CSV of the outlier detection based on LOF 
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5 Conclusion and Future Work 

In this deliverable we summarized the information about interfaces of the data mining tools 

developed for data mining and analysis described in deliverable D2.4.  

The main interface for integration into the OpenBudgets.eu infrastructure is the interface of 

DAM (Data Analysis and Mining) - described in chapter 2. The API endpoint of DAM is available 

at: http://dam-obeu.iais.fraunhofer.de/  

The data mining tools are available not only using the DAM API, but also using the proprietary 

interfaces with more (specific) functionality. The tools are currently running on three servers - 

UEP EasyMiner server, OKFGR OpenCPU server and the main Fraunhofer DAM server - 

described in chapter 4. This chapter contains description of external as well as internal APIs 

available for developers. Some data mining packages written for the R system are also 

described. 

For some data mining algorithms it is necessary to discretize the data values. The 

discretization developed for OpenBudgets.eu is available as part of EasyMiner (for rule or 

outlier detection algorithms) or as discretization using SPARQL - described in chapter 3. 

In the future development, the integration with visualisation tools will be completed. The data 

mining and data analysis tools should be also tested within the Large Scale Trials. 

 

 

 

 

  

http://dam-obeu.iais.fraunhofer.de/
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Source Codes of Described Software 

https://github.com/openbudgets/DAM  

https://github.com/okgreece/DescriptiveStats.OBeu  

https://github.com/okgreece/TimeSeries.OBeu  

https://github.com/okgreece/Cluster.OBeu  

https://github.com/KIZI/EasyMiner  

https://github.com/jindrichmynarz/discretize-sparql  

https://github.com/jaroslav-kuchar/fpmoutliers  

https://github.com/openbudgets/outlier_dm  
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