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Executive Summary 
 

This demonstrator deliverable contains a description of the extensions needed to implement 
various data optimisation, enrichment, and pre-processing tasks, which were developed for 
LinkedPipes ETL (LP-ETL), the ETL tool used in the OpenBudgets.eu project, and then a 
demonstration of processes implemented in LP-ETL, using these extensions. The data 
optimisation processes detect and report inconsistencies in data used in the project with the 
RDF Data Cube Vocabulary and the OpenBudgets.eu data model using six specific rules. The 
data enrichment processes demonstrate how data can be combined with other relevant data 
using the Linked Data principles to add significant value. Finally, the preparation for analysis 
process describes, how the RDF data used in the project is transformed to the less expressive 
CSV format required by many data mining tools, which are used to discover additional facts 
from the data. The created pipeline fragments are available in the repository at 
https://github.com/openbudgets/pipeline-fragments.

https://github.com/openbudgets/pipeline-fragments
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Abbreviations and Acronyms 
  
CSV Comma Separated Values 
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1 Introduction 
The well-known 80:20 rule of data science (Lohr, 2014) states that while analyses of data take 
20 % of a data scientist’s time, 80 % of the time is spent pre-processing data into a form 
suitable for analysis. In this deliverable we demonstrate several possible data pre-processing 
steps that can decrease the pre-processing effort needed to enable analysis of fiscal data in 
OpenBudgets.eu. 

We first document several features of LinkedPipes ETL (LP-ETL), the ETL framework 
described in deliverable 2.1 (Engels et al., 2016), that were developed as prerequisites for data 
pre-processing tasks described further on. In order to streamline pre-processing of fiscal data 
we created reusable pipeline fragments for LP-ETL that automate common tasks of data 
optimisation, enrichment, and preparation for analysis. These tasks include validation of 
integrity constraints imposed by the Data Cube Vocabulary and the OpenBudgets.eu data 
model, value normalization of monetary amounts using enriched data, or pre-processing for 
data analysis via propositionalization of RDF data into a single CSV table. We start by 
describing the newly developed features of LP-ETL, using which the pipeline fragments 
described later are built. 

2 Newly developed features of 
LinkedPipes ETL 

LinkedPipes ETL is the data processing tool we use in OpenBudgets.eu to ingest fiscal data 
in various formats and transform it to RDF, modelled according to the data model documented 
in deliverable 1.4 (Dudáš et al., 2015). The tool itself was introduced in deliverable 2.1 and is 
further described on its web page.1 

To be able to accomplish our goals in this deliverable, we needed to develop a few 
improvements to LP-ETL. The documentation here is nearly identical to the one we put in the 
LP-ETL web documentation.2 First, we introduce a mechanism for development and sharing 
of pieces of ETL pipelines called pipeline fragments. Then we describe our new Mustache 
template component, which allows us to dynamically generate SPARQL queries based on the 
data flowing through the pipeline. In line with that goes the improvement of the existing 
SPARQL components giving them the ability to execute the dynamically generated queries. 
The final addition is the ability to share pipelines without login credentials, which are specific 
to the specific development environment. 

2.1 Pipeline fragments 
Support for reusable pipeline fragments was developed for LP-ETL. It enables developers to 
share and reuse parts of their ETL pipelines. LP-ETL pipelines are represented as RDF in 
JSON-LD, which is a text format that allows to publish the pipelines easily on the Web. 
Pipelines can be thus used as parts of documentation of the ETL processes and also as directly 
usable examples of individual component’s usage. What a developer needs to do to reuse a 
published pipeline fragment is to import it from its URL either as a new pipeline, or as a part of 
an existing pipeline. This speeds up the development process in cases where similar pieces 
of pipelines need to be reused and flattens the learning curve both for experienced and novice 
developers when using new components. An example of a published pipeline fragment can be 
seen in the documentation of the Mustache component.3 

                                                

1 http://etl.linkedpipes.com  

2 http://etl.linkedpipes.com/documentation 

3 http://etl.linkedpipes.com/components/t-mustache 

http://etl.linkedpipes.com/
http://etl.linkedpipes.com/documentation
http://etl.linkedpipes.com/components/t-mustache
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2.2 Mustache template component 
We developed a component for LP-ETL implementing Mustache, a library for rendering text 
templates. First, we recommend the potential user of this component to get to know the library 
itself4 with its demo.5 There, a template and a sample JSON file with data are shown and the 
resulting text can be generated. In LP-ETL, we work with RDF instead of JSON, therefore, the 
template placeholders will be IRIs instead of JSON attributes and the template data will be 
stored as RDF. In our work presented in this deliverable, we use Mustache templates for 
generating SPARQL queries based on data and also for rendering  HTML reports from RDF 
data. 

2.2.1 Input data in JSON and in RDF 
Below, you can see the original Mustache input data from the demo in JSON (Figure 1) and 
the same input data in RDF (Figure 2). This can be used for comparison, because the structure 
and meaning remains the same. Note that in Figure 2 the order of the items has to be specified 
explicitly, because the RDF data model is a set of triples without ordering, which is in contrast 
to the tree-shaped JSON. 

{ 

  "header": "Colors", 

  "items": [ 

      {"name": "red", "first": true, "url": "#Red"}, 

      {"name": "green", "link": true, "url": "#Green"}, 

      {"name": "blue", "link": true, "url": "#Blue"} 

  ], 

  "empty": false 

} 

Figure 1 - Example of Mustache input data in JSON 

 

@prefix :         <http://localhost/ontology/> . 

@prefix ex:       <http://example.com/> . 

@prefix mustache: <http://plugins.linkedpipes.com/ontology/t-mustache#> . 

 

ex:1 a :OutputClass ; 

  :header "Colors" ; 

  :items ex:1-1, ex:1-2, ex:1-3 ; 

  :empty false ; 

  mustache:fileName "file.html" . 

 

                                                

4 http://mustache.github.io  

5 http://mustache.github.io/#demo 

http://mustache.github.io/
http://mustache.github.io/#demo
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ex:1-1 :name "blue" ;  

  :link true ; 

  :url "#Blue" ; 

  mustache:order 3 . 

 

ex:1-2 :name "red" ;  

  :first true ; 

  :url "#Red" ; 

  mustache:order 1 . 

 

ex:1-3 :name "green" ;  

  :link true ; 

  :url "#Green" ; 

  mustache:order 2 . 

Figure 2 - Example of Mustache input data in RDF (Turtle) 

2.2.2 Templates for JSON and for RDF 
Below, you can see the original Mustache template from the demo (Figure 3) for the JSON 
input data in Figure 1. For comparison, the template in Figure 4 is usable for RDF data from 
Figure 2. The structure of the data and the meaning of the Mustache constructs stays the 
same. 

<h1>{{header}}</h1> 
{{#bug}} 
{{/bug}} 
 
{{#items}} 
  {{#first}} 
    <li><strong>{{name}}</strong></li> 
  {{/first}} 
  {{#link}} 
    <li><a href="{{url}}">{{name}}</a></li> 
  {{/link}} 
{{/items}} 
 
{{#empty}} 
  <p>The list is empty.</p> 
{{/empty}} 

Figure 3 - Example Mustache template for JSON 
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<h1>{{http://localhost/ontology/header}}</h1> 
{{#bug}} 
{{/bug}} 
 

<ol> 
{{#http://localhost/ontology/items}} 
  {{#http://localhost/ontology/first}} 
    <li><strong>{{http://localhost/ontology/name}}</strong></li> 
  {{/http://localhost/ontology/first}} 
  {{#http://localhost/ontology/link}} 
    <li><a 
href="{{http://localhost/ontology/url}}">{{http://localhost/ontology/nam
e}}</a></li> 
  {{/http://localhost/ontology/link}} 
{{/http://localhost/ontology/items}} 

</ol> 
 
{{#http://localhost/ontology/empty}} 
  <p>The list is empty.</p> 
{{/http://localhost/ontology/empty}} 

Figure 4 - Example Mustache template for RDF usable in LP-ETL 

2.2.3 Output file 
Below in the Figure 5, the output file for our example is shown. It is a simple HTML markup, 
which can be generated both with the original Mustache JSON input data and JSON-based 
template, and the RDF input data and the new Mustache LP-ETL component. 

<h1>Colors</h1> 

 

<ol> 
  <li><strong>red</strong></li> 
  <li><a href="#Green">green</a></li> 
   <li><a href="#Blue">blue</a></li> 

</ol> 

Figure 5 - Example Mustache output 

2.2.4 LP-ETL template specifics 
The component looks in the input data for the instances of the output class specified in the 
configuration and executes the template on each one. In our example, the entity class was 
http://localhost/ontology/OutputClass. Note that only literals can be used by the 

template because IRIs are used to connect one object to another. In the case that you need to 
output the IRI itself, you can generate its literal version, e.g., using the SPARQL update 
component6 before passing the data to the Mustache component. 

 

                                                

6 http://etl.linkedpipes.com/components/t-sparqlupdate  

http://etl.linkedpipes.com/components/t-sparqlupdate
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In addition to the standard Mustache, LP-ETL templates support special properties that can 
further customize the outputs. 

The output file name property, denoted by the 
http://plugins.linkedpipes.com/ontology/t-mustache#fileName IRI, which can be 

attached to the entity class instance, can be used to generate a different file for each entity 
class instance. 

One of the key Mustache concepts is a list of items. In JSON, the order of the items is given 
implicitly, because JSON is a tree and therefore each node has an ordered sequence of 
children. In RDF, the order of the list items needs to be specified explicitly, because the RDF 

data model is a generic graph. We could have used the RDF list (i.e. rdf:Seq), however, it 

seemed that the explicit order will be more usable. The property is denoted by the 
http://plugins.linkedpipes.com/ontology/t-mustache#order property that can be 

attached to a list item. 

A sample pipeline fragment showing the component usage in LP-ETL is available.7 

2.3 Configurable SPARQL components 
The SPARQL query handling components of LP-ETL were improved so that they accept 
runtime configuration via RDF. This means that the developers can generate the SPARQL 
queries to be executed using other LP-ETL components based on input data, which improves 
the capabilities of LP-ETL pipelines. Specifically, this feature is used together with the 
Mustache component, e.g., to transform RDF data to CSV using a SPARQL SELECT query 
generated based on a Data Cube Vocabulary (DCV) data structure definition. Pipeline 
fragments described in the following sections use these components for adaptive SPARQL 
queries based on input data. In Figure 6, a simple example of the SPARQL CONSTRUCT 
component configuration is given. It is made of two triples, one stating the resource type and 
the other containing the query. 

@prefix sc: <http://plugins.linkedpipes.com/ontology/t-sparqlConstruct#> 
. 

 

<http://localhost/resources/configuration> a sc:Configuration ; 

    sc:query "CONSTRUCT { ?s ?p ?o } WHERE { ?s ?p ?o}" . 

Figure 6 - Sample SPARQL Construct RDF configuration 

2.4 Removing credentials for sharing LP-ETL pipelines 
A common problem identified when sharing LP-ETL pipelines was that environment-specific, 
and therefore sensitive credentials for handling data were shared along with the pipeline and 
had to be removed manually. This process was tedious, especially for frequently updated 
pipelines. Therefore, we implemented an extension to LP-ETL which adds an option to remove 
these credentials automatically when downloading a pipeline. This was done by tagging 
component configuration fields, which can potentially contain such sensitive information. 
These may include the username and password, but also the hostname and port number of 
the RDF stores, and local paths to files on servers. The configuration in these fields is then 
removed during download, so that the resulting file can be shared safely. 

                                                

7 http://etl.linkedpipes.com/assets/pipelines/t-mustache-1.jsonld 

http://etl.linkedpipes.com/assets/pipelines/t-mustache-1.jsonld


  D2.2 – v.1.0 

 
Page 11 

3 Optimisation 
We developed pipeline fragments for data normalization and validation. The validation pipeline 
fragments test if datasets conform to the Data Cube Vocabulary and the OpenBudgets.eu data 
model. The detected errors are reported to users who can proceed to fix them, typically by 
correcting the ETL pipelines for processing data or by extending the pipelines with additional 
transformations. 

3.1 DCV normalization 
The normal form of DCV data8 has all component properties attached on the level of 
observations. When data adheres to the normal form, its regularity allows to simplify queries 
on the data. The specification of DCV provides a normalization algorithm implemented as a 
series of SPARQL Update operations.9 We used these operations to develop a pipeline 
fragment10 that transforms DCV data into the normal form. DCV normalization is used as a pre-
processing step for all of the following pipeline fragments. 

3.2 DCV validation 
Data optimisation must be preceded by data validation that discovers problems that need to 
be fixed. Besides syntax validation, RDF allows to validate semantics given by the vocabularies 
used to describe data. The data model of OpenBudgets.eu (Dudáš et al., 2015) is based on 
the Data Cube Vocabulary (DCV). Consequently, there are 2 principal sources of integrity 
constraints that the data processed in OpenBudgets.eu needs to conform to. There are specific 
constraints for budget and spending data defined by the OpenBudgets.eu data model and 
generic constraints that all DCV datasets must adhere to. 

DCV defines 21 integrity constraints as a part of its specification.11 The constraints are 

formulated as SPARQL ASK queries that evaluate to true if a constraint violation is found. 

Use of SPARQL makes the constraints easy to implement. For example, the SPARQL rules 
are used in the Data Cube Validator.12 Alternatively, the NoSPA-RDF-Data-Cube-Validator13 
avoids SPARQL to achieve performance gains, and instead implements the integrity 
constraints directly in Java. In particular, the improved runtime is apparent in the integrity 
constraint 1214 that checks for duplicate observations. However, the validator produces results 
formatted in Markdown, which is suitable for reading by humans, but not for further automated 
processing. 

DCV integrity constraints expect the datasets to be validated to be in the normal form described 
above and available in the default graph of the queried RDF store. In order to transform a 
dataset to be validated into the normal form required by the validation, the DCV normalization 
pipeline fragments that we described above can be used. In addition to the dataset the default 
graph must contain its data structure definition (DSD), definitions of dimensions used in the 
DSD, and code lists used by coded properties in the DSD. Since DSDs may include reused 

                                                

8 https://www.w3.org/TR/vocab-data-cube/#h2_normalize 

9 https://www.w3.org/TR/vocab-data-cube/#normalize-algorithm 

10 https://github.com/openbudgets/pipeline-fragments/tree/master/dcv/dcv-normalization 

11 https://www.w3.org/TR/vocab-data-cube/#wf-rules 

12 Source code of the Data Cube Validator is bundled with the validator for the Organization Ontology 

in https://github.com/epimorphics/org-verification. 

13 https://github.com/yyz1989/NoSPA-RDF-Data-Cube-Validator 

14 https://www.w3.org/TR/vocab-data-cube/#ic-12 

https://www.w3.org/TR/vocab-data-cube/#h2_normalize
https://www.w3.org/TR/vocab-data-cube/#normalize-algorithm
https://github.com/openbudgets/pipeline-fragments/tree/master/dcv/dcv-normalization
https://www.w3.org/TR/vocab-data-cube/#wf-rules
https://github.com/epimorphics/org-verification
https://github.com/yyz1989/NoSPA-RDF-Data-Cube-Validator
https://www.w3.org/TR/vocab-data-cube/#ic-12
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component properties, gathering data for validation requires either to collect descriptions of 
the properties manually or dereference their IRIs and harvest their descriptions automatically. 

We developed a pipeline fragment for DCV validation.15 The required input of the validation is 
an RDF dataset that contains its DSD, descriptions of the DSD’s components, and their code 
lists. These requirements are tested via a SPARQL ASK component that stops the pipeline 
execution and raises an error if the constraints are not satisfied. The pipeline then executes 
the DCV integrity constraints on the provided dataset. The constraints are reformulated from 
SPARQL ASK queries in the DCV specification to SPARQL CONSTRUCT queries that output 
descriptions of the detected constraint violations. We implemented the integrity constraint 12 
by generating its query based on the dimensions in the dataset’s DSD. Compared with the 
constraint’s query defined in the DCV specification, the generated query achieves 
approximately 100× speed-up. The violations are described using the SPIN vocabulary.16 
Unlike simple SPARQL ASK queries that have boolean results SPIN vocabulary allows to 
describe constraint violations and thus provide helpful information to users who can fix the 
invalid data. Validation results are thus available in RDF, which makes them amenable to 
further processing. Additionally, the validation results are rendered into an HTML report via the 
Mustache component for their quick visual inspection by users. 

3.3 OpenBudgets.eu data model validation 
The data model of OpenBudgets.eu imposes additional constraints on top of DCV. Correctly 
modelled OpenBudgets.eu datasets adhere to the data model as described in (Dudáš et al., 
2015). Testing compliance with the OpenBudgets.eu data model can be automated to some 
degree as we show in this deliverable. However, there are many constraints that either cannot 
be validated automatically or the effort to do so is greater than the gains from automated 
validation (e.g., infrequent issue). We observed common errors appearing in the datasets 
modelled using the OpenBudgets.eu data model. To address these errors we developed 
several SPARQL rules that are able to detect some of the common errors. These rules mostly 
test the assumptions about the DSDs of OpenBudgets.eu datasets. Testing compliance 
between observations and DSDs is covered by generic DCV validation. In total, six validation 
rules were implemented: 

1. Redefinition of component property’s code list: This rule detects if the validated 

dataset redefines a code list for a coded component property from the core 

OpenBudgets.eu data model. Instead of defining a different code list a subproperty of 

the core component property should be derived and used with a specific code list. 

2. Hijacked17 core namespace: This rule tests if the dataset to be validated defines a 

term in the namespace of the core OpenBudgets.eu data model (i.e. 

http://data.openbudgets.eu/ontology/) that is not defined by the core data 

model itself. The core namespace should be used only for the terms in the core 

OpenBudgets.eu data model. New terms should be defined in a different namespace. 

3. Missing mandatory component property: Each dataset that adheres to the 

OpenBudgets.eu data model must contain the following component properties (or their 

subproperties): obeu-attribute:currency, obeu-

dimension:fiscalPeriod, obeu-dimension:operationCharacter, obeu-

dimension:organization, and obeu-measure:amount. This rule tests if these 

properties are explicitly provided in the dataset’s DSD. 

                                                

15 https://github.com/openbudgets/pipeline-fragments/tree/master/dcv/dcv-validation 

16 http://spinrdf.org/spin.html 

17 https://www.w3.org/wiki/NamespaceHijacking 

https://github.com/openbudgets/pipeline-fragments/tree/master/dcv/dcv-validation
http://spinrdf.org/spin.html
https://www.w3.org/wiki/NamespaceHijacking
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4. Property instantiation: We discovered that it is a common error to instantiate an RDF 

property. RDF only allows to instantiate classes, so instantiating properties is incorrect. 

We assume this error may be often caused by typos in IRIs of classes that differ from 

property IRIs only in character case (e.g., qb:DataSet and qb:dataSet). 

5. Use of abstract property: Several properties in the core OpenBudgets.eu data model 

are defined as abstract (e.g., obeu-dimension:classification); i.e. they should 

not be used directly and instead their subproperties should be minted. This rule test if 

the dataset to be validated is free from use of these abstract properties. 

6. Wrong character case in DCV: This rule detects if non-existent terms from the DCV 

namespace that differ only in character case from the terms in this namespace are 

used. Besides reporting the non-existent DCV term, the rule suggests an existing term 

with correct character case that may be used instead 

The pipeline fragment18 we developed for validation of OpenBudgets.eu data model requires 
the data model of OpenBudgets.eu to be available in a specific named graph. In order to 
automate population of this graph we created a pipeline19 that merges all data about the data 
model. Besides the OpenBudgets.eu data model it requires the description of the DCV to be 

in the named graph http://purl.org/linked-data/cube. We prepared a pipeline for 

loading DCV too.20 As is the case for DCV validation, the dataset to be validated must be in 
the normal form. 

LP-ETL does not support named graphs for internal data storage, which complicates the 
implementation of this pipeline fragment. As a work-around we load the validated dataset into 
an external RDF store and execute the validation rules using SPARQL extractor component 
on this endpoint. When the validation is finished, the pipeline automatically cleans the validated 
dataset from the RDF store. Similarly to the DCV validation, the validation results are available 
both in RDF described using the SPIN vocabulary and in an HTML report that is better suitable 
for human users. 

4 Enrichment 
Following the linked data approach, the way to solve problems is often to add more data. This 
is also the case in analyses of fiscal data that frequently require additional data. In particular, 
data enrichment is regularly needed for comparative analysis. Absolute values can be 
compared directly only in some cases, but comparison becomes feasible if we convert the 
absolute values to relative values using contextual data, such as population counts to compute 
per capita spending, that we add during data enrichment. In this deliverable, we show an 
enrichment that can be used to normalize monetary values. We also suggest several ways in 
which fiscal data can be enriched with data describing its context. 

Linking is a necessary prerequisite for enrichment. In our previous work, we demonstrated the 
benefits of linking code lists for enrichment of fiscal data (Ioannidis, 2016). To ease linking of 
large datasets, we developed a patch for the Silk link discovery framework that we describe 
further on. 

4.1 Value normalization of monetary amounts 
A basic requirement for comparative analysis of fiscal data is being able to compare monetary 
amounts in terms of their value. Instead of comparing nominal values of the amounts, we often 

                                                

18 https://github.com/openbudgets/pipeline-fragments/tree/master/obeu/obeu-model-integrity-

constraints 

19 https://github.com/openbudgets/pipeline-fragments/tree/master/obeu/load-obeu 

20 https://github.com/openbudgets/pipeline-fragments/tree/master/dcv/load-dcv 

https://github.com/openbudgets/pipeline-fragments/tree/master/obeu/obeu-model-integrity-constraints
https://github.com/openbudgets/pipeline-fragments/tree/master/obeu/obeu-model-integrity-constraints
https://github.com/openbudgets/pipeline-fragments/tree/master/obeu/load-obeu
https://github.com/openbudgets/pipeline-fragments/tree/master/dcv/load-dcv
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need to compare their real values. Suppose you have two amounts from different times, such 
as different fiscal years, and places, such as different EU member states. As European System 
of Accounts 2010 says: “The fact that countries have different price levels and currencies 
poses a challenge to interspatial comparisons of prices and volumes” (European Union, 2013, 
p. 303). How can you tell which of the amounts has a greater value? 

When it comes to money, space corresponds to currency and time corresponds to changes in 
the price level. In order to normalize currency it can be converted to a single currency, such as 
euro. Currency can be converted using exchange rates. Values can be adjusted for changing 
price levels by using price indices. Value normalization thus requires enrichment with two 
datasets, one about exchange rates, the other about a selected price index. Exchange rates 
for national currencies of EU member states averaged over a year are provided by Eurostat.21 
In order to normalize price levels, several coefficients can be used, such as implicit deflator 
based on gross domestic product (GDP), which is a measure of price level change with respect 
to a specific base year. Eurostat provides implicit deflators in euro for the EU member states 
based in every 5th year (e.g., 2005, 2010 etc.).22 

We can normalize an amount 𝑄 using the following calculation, in which 𝑄′ is the normalized 
monetary amount, 𝐼𝑝,𝑡is the price index for the target year to which we normalize, 𝐼𝑝,0is the 

price index for the original year when 𝑄 was expended, and𝐸𝑡is the exchange rate to euro for 
the target year: 

𝑄′ =  
𝐼𝑝,𝑡𝑄

𝐼𝑝,0𝐸𝑡
 

Equation 1: Value normalization using deflators and exchange rate 

The target year should be chosen as the most recent year in the normalized data. In our case, 
the employed price index in the implicit deflator. Deflator’s base year should be chosen as the 
nearest preceding year to the target year. For example, if the amounts to be normalized are 
from 2008 and 2014 and deflator’s base years are 2005, 2010, and 2015, we choose 2010. 
Eurostat offers the deflators either in national currencies or in euro. We chose to use deflators 
in national currencies because it is a generically applicable method. However, it is also possible 
to start by converting currency to euro and then apply a deflator in euro, which gives almost 
identical results if one of the deflated currencies is euro. 

In order to implement the normalization we reused the above-mentioned Eurostat datasets 
converted to RDF and modelled using DCV by the LATC project.23 An issue of the data is that 
it represents measures as strings instead of numbers. Moreover, as is often the case with EU-
funded projects, the LATC project ended and the data was not updated since 2014, so deflators 
are available only up to 2013. Another minor issue of the deflators datasets is the IRIs of the 
code list concepts for price indices lack description, so we can only guess their semantics from 

their IRIs. For example, http://eurostat.linked-

statistics.org/dic/unit#PD10_NAC is Price index (implicit deflator), 2010=100, 

national currency. 

We developed a pipeline fragment24 that produces normalized monetary measures for input 
fiscal datasets. The pipeline requires input data to be in the DCV normal form. Moreover, we 
encountered an issue that makes the pipeline require manual configuration. Country is often 
not explicit in data, but instead it is implicitly linked via the organization that spent the 
normalized amount. In most datasets, there is a single organization operating in a single 
country, so it is possible to provide the country manually. In cross-country datasets links to 

                                                

21 http://ec.europa.eu/eurostat/web/products-datasets/-/tec00033 

22 http://ec.europa.eu/eurostat/web/products-datasets/-/nama_10_gdp 

23 http://eurostat.linked-statistics.org 

24 https://github.com/openbudgets/pipeline-fragments/tree/master/monetary_value_normalization 

http://ec.europa.eu/eurostat/web/products-datasets/-/tec00033
http://ec.europa.eu/eurostat/web/products-datasets/-/nama_10_gdp
http://eurostat.linked-statistics.org/
https://github.com/openbudgets/pipeline-fragments/tree/master/monetary_value_normalization
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countries need to be provided explicitly in data and the pipeline fragment must be amended. 
Since there are multiple ways to represent years in fiscal data, the pipeline is limited to support 

only two common ways found in OpenBudgets.eu datasets (via obeu-

dimension:fiscalYear and obeu-dimension:date and the subproperties thereof). 

4.2 Contextual normalization 
Absolute monetary amounts can be converted to relative amounts by using data about the 
context in which the amounts are spent. For example, population counts can be used to 
compute per capita spending. We can enrich budget and spending data with data about the 
area in which it is spent. The typical contextual data about administrative areas includes 
demographic statistics and geospatial data. A prime source of such data in the context of the 
European Union is Eurostat.25 For each NUTS region26 it offers population counts,27 
densities,28 or area sizes.29 While Eurostat provides the data in TSV format, the LATC project 
exposed the data in RDF using DCV.30 Alternatively, higher-level indicators can be used to 
relate monetary amounts to relevant objectives, such as unemployment rate. For example, 
relevant indicators can be found in data by OECD,31 such as annual average wages. Such 
contextual data is typically available for administrative areas, such as NUTS regions, which 
can be linked straightforwardly via their codes. 

4.3 Patch for Silk link discovery framework 
In order to enable interlinking large datasets available via SPARQL endpoints we implemented 
a patch for the Silk link discovery framework.32 The patch fixes a common problem that Silk 
has with loading large datasets that need to be split into multiple chunks. The paging 
implemented by Silk required the queried RDF stores to sort the whole result set for each 
request, which is a computationally demanding operation that either slows down query 
execution or makes the RDF store reject the query completely. We leveraged the scrollable 
cursors functionality exposed by the Virtuoso RDF store that enables to prevent these effects 
by using a nested query. The patch was submitted  to the Silk code repository 
(https://github.com/silk-framework/silk/pull/59), but to the date of writing has not been merged 
in the repository. 

5 Preparation for analysis 
The data model of OpenBudgets.eu is based on RDF, but RDF cannot be directly processed 
by many analytical tools. Instead, CSV appears to be the lowest common denominator of data 
that is accepted by most tools. Therefore, we developed an automated conversion from RDF 
to CSV to ease processing the OpenBudgets.eu data in analytical tools. 

                                                

25 http://ec.europa.eu/eurostat 

26 http://ec.europa.eu/eurostat/web/nuts/overview 

27 http://ec.europa.eu/eurostat/web/products-datasets/-/demo_r_pjanaggr3 

28 http://ec.europa.eu/eurostat/web/products-datasets/-/demo_r_d3dens 

29 http://ec.europa.eu/eurostat/web/products-datasets/-/demo_r_d3area 

30 http://eurostat.linked-statistics.org 

31 http://oecd.270a.info 

32 http://silkframework.org 

https://github.com/silk-framework/silk/pull/59
http://ec.europa.eu/eurostat
http://ec.europa.eu/eurostat/web/nuts/overview
http://ec.europa.eu/eurostat/web/products-datasets/-/demo_r_pjanaggr3
http://ec.europa.eu/eurostat/web/products-datasets/-/demo_r_d3dens
http://ec.europa.eu/eurostat/web/products-datasets/-/demo_r_d3area
http://eurostat.linked-statistics.org/
http://oecd.270a.info/
http://silkframework.org/
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5.1 Conversion of DCV to CSV 
A common feature of data mining tools is that they require data in a single table with a set of 
propositions in the form of attribute-value pairs (Lachiche, 2013). The tabular data model 
expected by these tools can be serialized in CSV. Data model used by OpenBudgets.eu is 
based on RDF and is consequently more expressive than CSV can be. Nevertheless, the 
model is constrained by the Data Cube Vocabulary (DCV). DCV constrains dimensions and 
measures to 1..1 cardinality and attributes to 0..1 cardinality. Absence of multi-valued 
properties makes it considerably simpler to produce a single table out of a DCV dataset than 
out of arbitrary RDF data. Columns of the output CSV can be derived from the components 
explicitly described in a dataset’s DSD. Graph-shaped RDF can be transformed into the tabular 
format using SPARQL SELECT queries (Hausenblas et al., 2012). Finally, results of SPARQL 
SELECT queries can be serialized directly into CSV. 

We developed a pipeline fragment for LP-ETL33 that transforms DCV data into CSV. Its input 
consists of a DCV dataset in RDF with its DSD and its output is the dataset in CSV. The pipeline 
fragment extracts data about dataset’s components from its DSD, including the components’ 
type, attachment, and order. The extracted data is used to render a Mustache template that 
generates a SPARQL SELECT query to transform the dataset from RDF to CSV. 

he developed transformation has several limitations. In order to produce readable column 
names in the CSV output, it assumes that local names of the components properties used in 
a DSD are unique. If this assumption is broken, hashed IRIs (e.g., MD5 hashes) of the 
component properties can be appended to their local names to make them unique. The 
transformation does not support components attached to measure properties. Nevertheless, if 
component properties are attached to a measure property, they become its integral part, so 
their semantics is embodied in the measure. Additionally, such components can have only one 
value per dataset, so they give no distinguishing power to data mining. 

6 Conclusion 
We created data pre-processing pipeline fragments that automate several common tasks of 
optimisation, enrichment, and preparation for analysis. Reusability of the fragments is based 
on shared data model of DCV and the OpenBudgets.eu data model they operate on. The DCV 
basis of the OpenBudgets.eu data model allowed us to leverage standard operations specified 
for DCV data, such as normalization or validation of integrity constraints. We demonstrated the 
benefit of data enrichment on the conversion nominal monetary values to real values using 
exchange rates and price indices, which is a common task preceding comparative analyses. 
We aimed for maximum reuse also in the case of preparation for data analysis, for which we 
created a pipeline fragment that transforms RDF DCV data into CSV, a typical format used by 
data mining tools. 

The developed pipeline fragments will be used in the following data analyses in 
OpenBudgets.eu. They are available from the repository at 
https://github.com/openbudgets/pipeline-fragments. Wider application of the fragments will 
provide feedback on how to improve their usability and robustness. Data pre-processing work 
will continue with development of additional pipeline fragments as required by the 
OpenBudgets.eu use cases. 
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