

Project funded by the European Union’s Horizon 2020 Research and Innovation Programme (2014 – 2020)

OpenBudgets.eu: Fighting Corruption with Fiscal Transparency

Deliverable 2.2

Data optimisation, enrichment, and

preparation for analysis

Dissemination Level Public

Due Date of Deliverable Month 12, 30.4.2016

Actual Submission Date 30.05.2016

Work Package WP 2, Data Collection and Mining

Task T 2.2

Type Demonstrator

Approval Status Final

Version 1.0

Number of Pages 17

Filename
D2.2 Data optimisation, enrichment,
and preparation for analysis.docx

Abstract: The intermediate data produced using various ETL pipelines during their
development may not be consistent with the RDF Data Cube Vocabulary and the
OpenBudgets.eu data model. This is why we developed several techniques for data
optimisation, detecting such inconsistencies and reporting them to the pipeline
developers so that they can fix them. Once the data is in a consistent state, it may be
enriched with other data using the Linked Data principles and finally prepared for further
analysis using data mining tools. In this deliverable, we demonstrate our approach to
these tasks using LinkedPipes ETL, which we use for data preparation in the project.

The information in this document reflects only the author’s views and the European Community is not liable for any use
that may be made of the information contained therein. The information in this document is provided “as is” without
guarantee or warranty of any kind, express or implied, including but not limited to the fitness of the information for a

particular purpose. The user thereof uses the information at his/ her sole risk and liability.

Project Number: 645833 Start Date of Project: 01.05.2015 Duration: 30 months

 D2.2 – v.1.0

Page 2

History

Version Date Reason Revised by

0.1 16.05.2016 Version for internal review Jindřich Mynarz

0.2 30.05.2016 Version for external review Christiane Engles

1.0 30.05.2016 Final version for submission Jakub Klímek

Author List

Organisation Name Contact Information

UEP Jakub Klímek klimek@opendata.cz

UEP Jindřich Mynarz mynarzjindrich@gmail.com

UEP Petr Škoda skodapetr@gmail.com

UEP Jaroslav Zbranek zbranek.jaroslav@gmail.com

UEP Václav Zeman prozeman@gmail.com

mailto:klimek@opendata.cz
mailto:mynarzjindrich@gmail.com
mailto:skodapetr@gmail.com
mailto:zbranek.jaroslav@gmail.com
mailto:prozeman@gmail.com

 D2.2 – v.1.0

Page 3

Executive Summary

This demonstrator deliverable contains a description of the extensions needed to implement
various data optimisation, enrichment, and pre-processing tasks, which were developed for
LinkedPipes ETL (LP-ETL), the ETL tool used in the OpenBudgets.eu project, and then a
demonstration of processes implemented in LP-ETL, using these extensions. The data
optimisation processes detect and report inconsistencies in data used in the project with the
RDF Data Cube Vocabulary and the OpenBudgets.eu data model using six specific rules. The
data enrichment processes demonstrate how data can be combined with other relevant data
using the Linked Data principles to add significant value. Finally, the preparation for analysis
process describes, how the RDF data used in the project is transformed to the less expressive
CSV format required by many data mining tools, which are used to discover additional facts
from the data. The created pipeline fragments are available in the repository at
https://github.com/openbudgets/pipeline-fragments.

https://github.com/openbudgets/pipeline-fragments

 D2.2 – v.1.0

Page 4

Abbreviations and Acronyms

CSV Comma Separated Values

DCV The RDF Data Cube Vocabulary

DSD Data Structure Definition

ETL Extract Transform Load

IRI Internationalized Resource Identifier

LP-ETL LinkedPipes ETL

NUTS Nomenclature of Territorial Units for Statistics

RDF Resource Description Framework

TSV Tab-separated values

 D2.2 – v.1.0

Page 5

Table of Contents

1 INTRODUCTION ... 6

2 NEWLY DEVELOPED FEATURES OF LINKEDPIPES ETL 6

2.1 PIPELINE FRAGMENTS .. 6

2.2 MUSTACHE TEMPLATE COMPONENT ... 7

2.2.1 Input data in JSON and in RDF .. 7

2.2.2 Templates for JSON and for RDF ... 8

2.2.3 Output file ... 9

2.2.4 LP-ETL template specifics .. 9

2.3 CONFIGURABLE SPARQL COMPONENTS ..10

2.4 REMOVING CREDENTIALS FOR SHARING LP-ETL PIPELINES10

3 OPTIMISATION ..11

3.1 DCV NORMALIZATION ..11

3.2 DCV VALIDATION ..11

3.3 OPENBUDGETS.EU DATA MODEL VALIDATION ...12

4 ENRICHMENT..13

4.1 VALUE NORMALIZATION OF MONETARY AMOUNTS13

4.2 CONTEXTUAL NORMALIZATION ..15

4.3 PATCH FOR SILK LINK DISCOVERY FRAMEWORK15

5 PREPARATION FOR ANALYSIS ..15

5.1 CONVERSION OF DCV TO CSV ..16

6 CONCLUSION ...16

7 REFERENCES ...16

 D2.2 – v.1.0

Page 6

1 Introduction
The well-known 80:20 rule of data science (Lohr, 2014) states that while analyses of data take
20 % of a data scientist’s time, 80 % of the time is spent pre-processing data into a form
suitable for analysis. In this deliverable we demonstrate several possible data pre-processing
steps that can decrease the pre-processing effort needed to enable analysis of fiscal data in
OpenBudgets.eu.

We first document several features of LinkedPipes ETL (LP-ETL), the ETL framework
described in deliverable 2.1 (Engels et al., 2016), that were developed as prerequisites for data
pre-processing tasks described further on. In order to streamline pre-processing of fiscal data
we created reusable pipeline fragments for LP-ETL that automate common tasks of data
optimisation, enrichment, and preparation for analysis. These tasks include validation of
integrity constraints imposed by the Data Cube Vocabulary and the OpenBudgets.eu data
model, value normalization of monetary amounts using enriched data, or pre-processing for
data analysis via propositionalization of RDF data into a single CSV table. We start by
describing the newly developed features of LP-ETL, using which the pipeline fragments
described later are built.

2 Newly developed features of
LinkedPipes ETL

LinkedPipes ETL is the data processing tool we use in OpenBudgets.eu to ingest fiscal data
in various formats and transform it to RDF, modelled according to the data model documented
in deliverable 1.4 (Dudáš et al., 2015). The tool itself was introduced in deliverable 2.1 and is
further described on its web page.1

To be able to accomplish our goals in this deliverable, we needed to develop a few
improvements to LP-ETL. The documentation here is nearly identical to the one we put in the
LP-ETL web documentation.2 First, we introduce a mechanism for development and sharing
of pieces of ETL pipelines called pipeline fragments. Then we describe our new Mustache
template component, which allows us to dynamically generate SPARQL queries based on the
data flowing through the pipeline. In line with that goes the improvement of the existing
SPARQL components giving them the ability to execute the dynamically generated queries.
The final addition is the ability to share pipelines without login credentials, which are specific
to the specific development environment.

2.1 Pipeline fragments
Support for reusable pipeline fragments was developed for LP-ETL. It enables developers to
share and reuse parts of their ETL pipelines. LP-ETL pipelines are represented as RDF in
JSON-LD, which is a text format that allows to publish the pipelines easily on the Web.
Pipelines can be thus used as parts of documentation of the ETL processes and also as directly
usable examples of individual component’s usage. What a developer needs to do to reuse a
published pipeline fragment is to import it from its URL either as a new pipeline, or as a part of
an existing pipeline. This speeds up the development process in cases where similar pieces
of pipelines need to be reused and flattens the learning curve both for experienced and novice
developers when using new components. An example of a published pipeline fragment can be
seen in the documentation of the Mustache component.3

1 http://etl.linkedpipes.com

2 http://etl.linkedpipes.com/documentation

3 http://etl.linkedpipes.com/components/t-mustache

http://etl.linkedpipes.com/
http://etl.linkedpipes.com/documentation
http://etl.linkedpipes.com/components/t-mustache

 D2.2 – v.1.0

Page 7

2.2 Mustache template component
We developed a component for LP-ETL implementing Mustache, a library for rendering text
templates. First, we recommend the potential user of this component to get to know the library
itself4 with its demo.5 There, a template and a sample JSON file with data are shown and the
resulting text can be generated. In LP-ETL, we work with RDF instead of JSON, therefore, the
template placeholders will be IRIs instead of JSON attributes and the template data will be
stored as RDF. In our work presented in this deliverable, we use Mustache templates for
generating SPARQL queries based on data and also for rendering HTML reports from RDF
data.

2.2.1 Input data in JSON and in RDF
Below, you can see the original Mustache input data from the demo in JSON (Figure 1) and
the same input data in RDF (Figure 2). This can be used for comparison, because the structure
and meaning remains the same. Note that in Figure 2 the order of the items has to be specified
explicitly, because the RDF data model is a set of triples without ordering, which is in contrast
to the tree-shaped JSON.

{

 "header": "Colors",

 "items": [

 {"name": "red", "first": true, "url": "#Red"},

 {"name": "green", "link": true, "url": "#Green"},

 {"name": "blue", "link": true, "url": "#Blue"}

],

 "empty": false

}

Figure 1 - Example of Mustache input data in JSON

@prefix : <http://localhost/ontology/> .

@prefix ex: <http://example.com/> .

@prefix mustache: <http://plugins.linkedpipes.com/ontology/t-mustache#> .

ex:1 a :OutputClass ;

 :header "Colors" ;

 :items ex:1-1, ex:1-2, ex:1-3 ;

 :empty false ;

 mustache:fileName "file.html" .

4 http://mustache.github.io

5 http://mustache.github.io/#demo

http://mustache.github.io/
http://mustache.github.io/#demo

 D2.2 – v.1.0

Page 8

ex:1-1 :name "blue" ;

 :link true ;

 :url "#Blue" ;

 mustache:order 3 .

ex:1-2 :name "red" ;

 :first true ;

 :url "#Red" ;

 mustache:order 1 .

ex:1-3 :name "green" ;

 :link true ;

 :url "#Green" ;

 mustache:order 2 .

Figure 2 - Example of Mustache input data in RDF (Turtle)

2.2.2 Templates for JSON and for RDF
Below, you can see the original Mustache template from the demo (Figure 3) for the JSON
input data in Figure 1. For comparison, the template in Figure 4 is usable for RDF data from
Figure 2. The structure of the data and the meaning of the Mustache constructs stays the
same.

<h1>{{header}}</h1>
{{#bug}}
{{/bug}}

{{#items}}
 {{#first}}
 {{name}}
 {{/first}}
 {{#link}}
 {{name}}
 {{/link}}
{{/items}}

{{#empty}}
 <p>The list is empty.</p>
{{/empty}}

Figure 3 - Example Mustache template for JSON

 D2.2 – v.1.0

Page 9

<h1>{{http://localhost/ontology/header}}</h1>
{{#bug}}
{{/bug}}

{{#http://localhost/ontology/items}}
 {{#http://localhost/ontology/first}}
 {{http://localhost/ontology/name}}
 {{/http://localhost/ontology/first}}
 {{#http://localhost/ontology/link}}
 {{http://localhost/ontology/nam
e}}
 {{/http://localhost/ontology/link}}
{{/http://localhost/ontology/items}}

{{#http://localhost/ontology/empty}}
 <p>The list is empty.</p>
{{/http://localhost/ontology/empty}}

Figure 4 - Example Mustache template for RDF usable in LP-ETL

2.2.3 Output file
Below in the Figure 5, the output file for our example is shown. It is a simple HTML markup,
which can be generated both with the original Mustache JSON input data and JSON-based
template, and the RDF input data and the new Mustache LP-ETL component.

<h1>Colors</h1>

 red
 green
 blue

Figure 5 - Example Mustache output

2.2.4 LP-ETL template specifics
The component looks in the input data for the instances of the output class specified in the
configuration and executes the template on each one. In our example, the entity class was
http://localhost/ontology/OutputClass. Note that only literals can be used by the

template because IRIs are used to connect one object to another. In the case that you need to
output the IRI itself, you can generate its literal version, e.g., using the SPARQL update
component6 before passing the data to the Mustache component.

6 http://etl.linkedpipes.com/components/t-sparqlupdate

http://etl.linkedpipes.com/components/t-sparqlupdate

 D2.2 – v.1.0

Page 10

In addition to the standard Mustache, LP-ETL templates support special properties that can
further customize the outputs.

The output file name property, denoted by the
http://plugins.linkedpipes.com/ontology/t-mustache#fileName IRI, which can be

attached to the entity class instance, can be used to generate a different file for each entity
class instance.

One of the key Mustache concepts is a list of items. In JSON, the order of the items is given
implicitly, because JSON is a tree and therefore each node has an ordered sequence of
children. In RDF, the order of the list items needs to be specified explicitly, because the RDF

data model is a generic graph. We could have used the RDF list (i.e. rdf:Seq), however, it

seemed that the explicit order will be more usable. The property is denoted by the
http://plugins.linkedpipes.com/ontology/t-mustache#order property that can be

attached to a list item.

A sample pipeline fragment showing the component usage in LP-ETL is available.7

2.3 Configurable SPARQL components
The SPARQL query handling components of LP-ETL were improved so that they accept
runtime configuration via RDF. This means that the developers can generate the SPARQL
queries to be executed using other LP-ETL components based on input data, which improves
the capabilities of LP-ETL pipelines. Specifically, this feature is used together with the
Mustache component, e.g., to transform RDF data to CSV using a SPARQL SELECT query
generated based on a Data Cube Vocabulary (DCV) data structure definition. Pipeline
fragments described in the following sections use these components for adaptive SPARQL
queries based on input data. In Figure 6, a simple example of the SPARQL CONSTRUCT
component configuration is given. It is made of two triples, one stating the resource type and
the other containing the query.

@prefix sc: <http://plugins.linkedpipes.com/ontology/t-sparqlConstruct#>
.

<http://localhost/resources/configuration> a sc:Configuration ;

 sc:query "CONSTRUCT { ?s ?p ?o } WHERE { ?s ?p ?o}" .

Figure 6 - Sample SPARQL Construct RDF configuration

2.4 Removing credentials for sharing LP-ETL pipelines
A common problem identified when sharing LP-ETL pipelines was that environment-specific,
and therefore sensitive credentials for handling data were shared along with the pipeline and
had to be removed manually. This process was tedious, especially for frequently updated
pipelines. Therefore, we implemented an extension to LP-ETL which adds an option to remove
these credentials automatically when downloading a pipeline. This was done by tagging
component configuration fields, which can potentially contain such sensitive information.
These may include the username and password, but also the hostname and port number of
the RDF stores, and local paths to files on servers. The configuration in these fields is then
removed during download, so that the resulting file can be shared safely.

7 http://etl.linkedpipes.com/assets/pipelines/t-mustache-1.jsonld

http://etl.linkedpipes.com/assets/pipelines/t-mustache-1.jsonld

 D2.2 – v.1.0

Page 11

3 Optimisation
We developed pipeline fragments for data normalization and validation. The validation pipeline
fragments test if datasets conform to the Data Cube Vocabulary and the OpenBudgets.eu data
model. The detected errors are reported to users who can proceed to fix them, typically by
correcting the ETL pipelines for processing data or by extending the pipelines with additional
transformations.

3.1 DCV normalization
The normal form of DCV data8 has all component properties attached on the level of
observations. When data adheres to the normal form, its regularity allows to simplify queries
on the data. The specification of DCV provides a normalization algorithm implemented as a
series of SPARQL Update operations.9 We used these operations to develop a pipeline
fragment10 that transforms DCV data into the normal form. DCV normalization is used as a pre-
processing step for all of the following pipeline fragments.

3.2 DCV validation
Data optimisation must be preceded by data validation that discovers problems that need to
be fixed. Besides syntax validation, RDF allows to validate semantics given by the vocabularies
used to describe data. The data model of OpenBudgets.eu (Dudáš et al., 2015) is based on
the Data Cube Vocabulary (DCV). Consequently, there are 2 principal sources of integrity
constraints that the data processed in OpenBudgets.eu needs to conform to. There are specific
constraints for budget and spending data defined by the OpenBudgets.eu data model and
generic constraints that all DCV datasets must adhere to.

DCV defines 21 integrity constraints as a part of its specification.11 The constraints are

formulated as SPARQL ASK queries that evaluate to true if a constraint violation is found.

Use of SPARQL makes the constraints easy to implement. For example, the SPARQL rules
are used in the Data Cube Validator.12 Alternatively, the NoSPA-RDF-Data-Cube-Validator13
avoids SPARQL to achieve performance gains, and instead implements the integrity
constraints directly in Java. In particular, the improved runtime is apparent in the integrity
constraint 1214 that checks for duplicate observations. However, the validator produces results
formatted in Markdown, which is suitable for reading by humans, but not for further automated
processing.

DCV integrity constraints expect the datasets to be validated to be in the normal form described
above and available in the default graph of the queried RDF store. In order to transform a
dataset to be validated into the normal form required by the validation, the DCV normalization
pipeline fragments that we described above can be used. In addition to the dataset the default
graph must contain its data structure definition (DSD), definitions of dimensions used in the
DSD, and code lists used by coded properties in the DSD. Since DSDs may include reused

8 https://www.w3.org/TR/vocab-data-cube/#h2_normalize

9 https://www.w3.org/TR/vocab-data-cube/#normalize-algorithm

10 https://github.com/openbudgets/pipeline-fragments/tree/master/dcv/dcv-normalization

11 https://www.w3.org/TR/vocab-data-cube/#wf-rules

12 Source code of the Data Cube Validator is bundled with the validator for the Organization Ontology

in https://github.com/epimorphics/org-verification.

13 https://github.com/yyz1989/NoSPA-RDF-Data-Cube-Validator

14 https://www.w3.org/TR/vocab-data-cube/#ic-12

https://www.w3.org/TR/vocab-data-cube/#h2_normalize
https://www.w3.org/TR/vocab-data-cube/#normalize-algorithm
https://github.com/openbudgets/pipeline-fragments/tree/master/dcv/dcv-normalization
https://www.w3.org/TR/vocab-data-cube/#wf-rules
https://github.com/epimorphics/org-verification
https://github.com/yyz1989/NoSPA-RDF-Data-Cube-Validator
https://www.w3.org/TR/vocab-data-cube/#ic-12

 D2.2 – v.1.0

Page 12

component properties, gathering data for validation requires either to collect descriptions of
the properties manually or dereference their IRIs and harvest their descriptions automatically.

We developed a pipeline fragment for DCV validation.15 The required input of the validation is
an RDF dataset that contains its DSD, descriptions of the DSD’s components, and their code
lists. These requirements are tested via a SPARQL ASK component that stops the pipeline
execution and raises an error if the constraints are not satisfied. The pipeline then executes
the DCV integrity constraints on the provided dataset. The constraints are reformulated from
SPARQL ASK queries in the DCV specification to SPARQL CONSTRUCT queries that output
descriptions of the detected constraint violations. We implemented the integrity constraint 12
by generating its query based on the dimensions in the dataset’s DSD. Compared with the
constraint’s query defined in the DCV specification, the generated query achieves
approximately 100× speed-up. The violations are described using the SPIN vocabulary.16
Unlike simple SPARQL ASK queries that have boolean results SPIN vocabulary allows to
describe constraint violations and thus provide helpful information to users who can fix the
invalid data. Validation results are thus available in RDF, which makes them amenable to
further processing. Additionally, the validation results are rendered into an HTML report via the
Mustache component for their quick visual inspection by users.

3.3 OpenBudgets.eu data model validation
The data model of OpenBudgets.eu imposes additional constraints on top of DCV. Correctly
modelled OpenBudgets.eu datasets adhere to the data model as described in (Dudáš et al.,
2015). Testing compliance with the OpenBudgets.eu data model can be automated to some
degree as we show in this deliverable. However, there are many constraints that either cannot
be validated automatically or the effort to do so is greater than the gains from automated
validation (e.g., infrequent issue). We observed common errors appearing in the datasets
modelled using the OpenBudgets.eu data model. To address these errors we developed
several SPARQL rules that are able to detect some of the common errors. These rules mostly
test the assumptions about the DSDs of OpenBudgets.eu datasets. Testing compliance
between observations and DSDs is covered by generic DCV validation. In total, six validation
rules were implemented:

1. Redefinition of component property’s code list: This rule detects if the validated

dataset redefines a code list for a coded component property from the core

OpenBudgets.eu data model. Instead of defining a different code list a subproperty of

the core component property should be derived and used with a specific code list.

2. Hijacked17 core namespace: This rule tests if the dataset to be validated defines a

term in the namespace of the core OpenBudgets.eu data model (i.e.

http://data.openbudgets.eu/ontology/) that is not defined by the core data

model itself. The core namespace should be used only for the terms in the core

OpenBudgets.eu data model. New terms should be defined in a different namespace.

3. Missing mandatory component property: Each dataset that adheres to the

OpenBudgets.eu data model must contain the following component properties (or their

subproperties): obeu-attribute:currency, obeu-

dimension:fiscalPeriod, obeu-dimension:operationCharacter, obeu-

dimension:organization, and obeu-measure:amount. This rule tests if these

properties are explicitly provided in the dataset’s DSD.

15 https://github.com/openbudgets/pipeline-fragments/tree/master/dcv/dcv-validation

16 http://spinrdf.org/spin.html

17 https://www.w3.org/wiki/NamespaceHijacking

https://github.com/openbudgets/pipeline-fragments/tree/master/dcv/dcv-validation
http://spinrdf.org/spin.html
https://www.w3.org/wiki/NamespaceHijacking

 D2.2 – v.1.0

Page 13

4. Property instantiation: We discovered that it is a common error to instantiate an RDF

property. RDF only allows to instantiate classes, so instantiating properties is incorrect.

We assume this error may be often caused by typos in IRIs of classes that differ from

property IRIs only in character case (e.g., qb:DataSet and qb:dataSet).

5. Use of abstract property: Several properties in the core OpenBudgets.eu data model

are defined as abstract (e.g., obeu-dimension:classification); i.e. they should

not be used directly and instead their subproperties should be minted. This rule test if

the dataset to be validated is free from use of these abstract properties.

6. Wrong character case in DCV: This rule detects if non-existent terms from the DCV

namespace that differ only in character case from the terms in this namespace are

used. Besides reporting the non-existent DCV term, the rule suggests an existing term

with correct character case that may be used instead

The pipeline fragment18 we developed for validation of OpenBudgets.eu data model requires
the data model of OpenBudgets.eu to be available in a specific named graph. In order to
automate population of this graph we created a pipeline19 that merges all data about the data
model. Besides the OpenBudgets.eu data model it requires the description of the DCV to be

in the named graph http://purl.org/linked-data/cube. We prepared a pipeline for

loading DCV too.20 As is the case for DCV validation, the dataset to be validated must be in
the normal form.

LP-ETL does not support named graphs for internal data storage, which complicates the
implementation of this pipeline fragment. As a work-around we load the validated dataset into
an external RDF store and execute the validation rules using SPARQL extractor component
on this endpoint. When the validation is finished, the pipeline automatically cleans the validated
dataset from the RDF store. Similarly to the DCV validation, the validation results are available
both in RDF described using the SPIN vocabulary and in an HTML report that is better suitable
for human users.

4 Enrichment
Following the linked data approach, the way to solve problems is often to add more data. This
is also the case in analyses of fiscal data that frequently require additional data. In particular,
data enrichment is regularly needed for comparative analysis. Absolute values can be
compared directly only in some cases, but comparison becomes feasible if we convert the
absolute values to relative values using contextual data, such as population counts to compute
per capita spending, that we add during data enrichment. In this deliverable, we show an
enrichment that can be used to normalize monetary values. We also suggest several ways in
which fiscal data can be enriched with data describing its context.

Linking is a necessary prerequisite for enrichment. In our previous work, we demonstrated the
benefits of linking code lists for enrichment of fiscal data (Ioannidis, 2016). To ease linking of
large datasets, we developed a patch for the Silk link discovery framework that we describe
further on.

4.1 Value normalization of monetary amounts
A basic requirement for comparative analysis of fiscal data is being able to compare monetary
amounts in terms of their value. Instead of comparing nominal values of the amounts, we often

18 https://github.com/openbudgets/pipeline-fragments/tree/master/obeu/obeu-model-integrity-

constraints

19 https://github.com/openbudgets/pipeline-fragments/tree/master/obeu/load-obeu

20 https://github.com/openbudgets/pipeline-fragments/tree/master/dcv/load-dcv

https://github.com/openbudgets/pipeline-fragments/tree/master/obeu/obeu-model-integrity-constraints
https://github.com/openbudgets/pipeline-fragments/tree/master/obeu/obeu-model-integrity-constraints
https://github.com/openbudgets/pipeline-fragments/tree/master/obeu/load-obeu
https://github.com/openbudgets/pipeline-fragments/tree/master/dcv/load-dcv

 D2.2 – v.1.0

Page 14

need to compare their real values. Suppose you have two amounts from different times, such
as different fiscal years, and places, such as different EU member states. As European System
of Accounts 2010 says: “The fact that countries have different price levels and currencies
poses a challenge to interspatial comparisons of prices and volumes” (European Union, 2013,
p. 303). How can you tell which of the amounts has a greater value?

When it comes to money, space corresponds to currency and time corresponds to changes in
the price level. In order to normalize currency it can be converted to a single currency, such as
euro. Currency can be converted using exchange rates. Values can be adjusted for changing
price levels by using price indices. Value normalization thus requires enrichment with two
datasets, one about exchange rates, the other about a selected price index. Exchange rates
for national currencies of EU member states averaged over a year are provided by Eurostat.21
In order to normalize price levels, several coefficients can be used, such as implicit deflator
based on gross domestic product (GDP), which is a measure of price level change with respect
to a specific base year. Eurostat provides implicit deflators in euro for the EU member states
based in every 5th year (e.g., 2005, 2010 etc.).22

We can normalize an amount 𝑄 using the following calculation, in which 𝑄′ is the normalized
monetary amount, 𝐼𝑝,𝑡is the price index for the target year to which we normalize, 𝐼𝑝,0is the

price index for the original year when 𝑄 was expended, and𝐸𝑡is the exchange rate to euro for
the target year:

𝑄′ =
𝐼𝑝,𝑡𝑄

𝐼𝑝,0𝐸𝑡

Equation 1: Value normalization using deflators and exchange rate

The target year should be chosen as the most recent year in the normalized data. In our case,
the employed price index in the implicit deflator. Deflator’s base year should be chosen as the
nearest preceding year to the target year. For example, if the amounts to be normalized are
from 2008 and 2014 and deflator’s base years are 2005, 2010, and 2015, we choose 2010.
Eurostat offers the deflators either in national currencies or in euro. We chose to use deflators
in national currencies because it is a generically applicable method. However, it is also possible
to start by converting currency to euro and then apply a deflator in euro, which gives almost
identical results if one of the deflated currencies is euro.

In order to implement the normalization we reused the above-mentioned Eurostat datasets
converted to RDF and modelled using DCV by the LATC project.23 An issue of the data is that
it represents measures as strings instead of numbers. Moreover, as is often the case with EU-
funded projects, the LATC project ended and the data was not updated since 2014, so deflators
are available only up to 2013. Another minor issue of the deflators datasets is the IRIs of the
code list concepts for price indices lack description, so we can only guess their semantics from

their IRIs. For example, http://eurostat.linked-

statistics.org/dic/unit#PD10_NAC is Price index (implicit deflator), 2010=100,

national currency.

We developed a pipeline fragment24 that produces normalized monetary measures for input
fiscal datasets. The pipeline requires input data to be in the DCV normal form. Moreover, we
encountered an issue that makes the pipeline require manual configuration. Country is often
not explicit in data, but instead it is implicitly linked via the organization that spent the
normalized amount. In most datasets, there is a single organization operating in a single
country, so it is possible to provide the country manually. In cross-country datasets links to

21 http://ec.europa.eu/eurostat/web/products-datasets/-/tec00033

22 http://ec.europa.eu/eurostat/web/products-datasets/-/nama_10_gdp

23 http://eurostat.linked-statistics.org

24 https://github.com/openbudgets/pipeline-fragments/tree/master/monetary_value_normalization

http://ec.europa.eu/eurostat/web/products-datasets/-/tec00033
http://ec.europa.eu/eurostat/web/products-datasets/-/nama_10_gdp
http://eurostat.linked-statistics.org/
https://github.com/openbudgets/pipeline-fragments/tree/master/monetary_value_normalization

 D2.2 – v.1.0

Page 15

countries need to be provided explicitly in data and the pipeline fragment must be amended.
Since there are multiple ways to represent years in fiscal data, the pipeline is limited to support

only two common ways found in OpenBudgets.eu datasets (via obeu-

dimension:fiscalYear and obeu-dimension:date and the subproperties thereof).

4.2 Contextual normalization
Absolute monetary amounts can be converted to relative amounts by using data about the
context in which the amounts are spent. For example, population counts can be used to
compute per capita spending. We can enrich budget and spending data with data about the
area in which it is spent. The typical contextual data about administrative areas includes
demographic statistics and geospatial data. A prime source of such data in the context of the
European Union is Eurostat.25 For each NUTS region26 it offers population counts,27
densities,28 or area sizes.29 While Eurostat provides the data in TSV format, the LATC project
exposed the data in RDF using DCV.30 Alternatively, higher-level indicators can be used to
relate monetary amounts to relevant objectives, such as unemployment rate. For example,
relevant indicators can be found in data by OECD,31 such as annual average wages. Such
contextual data is typically available for administrative areas, such as NUTS regions, which
can be linked straightforwardly via their codes.

4.3 Patch for Silk link discovery framework
In order to enable interlinking large datasets available via SPARQL endpoints we implemented
a patch for the Silk link discovery framework.32 The patch fixes a common problem that Silk
has with loading large datasets that need to be split into multiple chunks. The paging
implemented by Silk required the queried RDF stores to sort the whole result set for each
request, which is a computationally demanding operation that either slows down query
execution or makes the RDF store reject the query completely. We leveraged the scrollable
cursors functionality exposed by the Virtuoso RDF store that enables to prevent these effects
by using a nested query. The patch was submitted to the Silk code repository
(https://github.com/silk-framework/silk/pull/59), but to the date of writing has not been merged
in the repository.

5 Preparation for analysis
The data model of OpenBudgets.eu is based on RDF, but RDF cannot be directly processed
by many analytical tools. Instead, CSV appears to be the lowest common denominator of data
that is accepted by most tools. Therefore, we developed an automated conversion from RDF
to CSV to ease processing the OpenBudgets.eu data in analytical tools.

25 http://ec.europa.eu/eurostat

26 http://ec.europa.eu/eurostat/web/nuts/overview

27 http://ec.europa.eu/eurostat/web/products-datasets/-/demo_r_pjanaggr3

28 http://ec.europa.eu/eurostat/web/products-datasets/-/demo_r_d3dens

29 http://ec.europa.eu/eurostat/web/products-datasets/-/demo_r_d3area

30 http://eurostat.linked-statistics.org

31 http://oecd.270a.info

32 http://silkframework.org

https://github.com/silk-framework/silk/pull/59
http://ec.europa.eu/eurostat
http://ec.europa.eu/eurostat/web/nuts/overview
http://ec.europa.eu/eurostat/web/products-datasets/-/demo_r_pjanaggr3
http://ec.europa.eu/eurostat/web/products-datasets/-/demo_r_d3dens
http://ec.europa.eu/eurostat/web/products-datasets/-/demo_r_d3area
http://eurostat.linked-statistics.org/
http://oecd.270a.info/
http://silkframework.org/

 D2.2 – v.1.0

Page 16

5.1 Conversion of DCV to CSV
A common feature of data mining tools is that they require data in a single table with a set of
propositions in the form of attribute-value pairs (Lachiche, 2013). The tabular data model
expected by these tools can be serialized in CSV. Data model used by OpenBudgets.eu is
based on RDF and is consequently more expressive than CSV can be. Nevertheless, the
model is constrained by the Data Cube Vocabulary (DCV). DCV constrains dimensions and
measures to 1..1 cardinality and attributes to 0..1 cardinality. Absence of multi-valued
properties makes it considerably simpler to produce a single table out of a DCV dataset than
out of arbitrary RDF data. Columns of the output CSV can be derived from the components
explicitly described in a dataset’s DSD. Graph-shaped RDF can be transformed into the tabular
format using SPARQL SELECT queries (Hausenblas et al., 2012). Finally, results of SPARQL
SELECT queries can be serialized directly into CSV.

We developed a pipeline fragment for LP-ETL33 that transforms DCV data into CSV. Its input
consists of a DCV dataset in RDF with its DSD and its output is the dataset in CSV. The pipeline
fragment extracts data about dataset’s components from its DSD, including the components’
type, attachment, and order. The extracted data is used to render a Mustache template that
generates a SPARQL SELECT query to transform the dataset from RDF to CSV.

he developed transformation has several limitations. In order to produce readable column
names in the CSV output, it assumes that local names of the components properties used in
a DSD are unique. If this assumption is broken, hashed IRIs (e.g., MD5 hashes) of the
component properties can be appended to their local names to make them unique. The
transformation does not support components attached to measure properties. Nevertheless, if
component properties are attached to a measure property, they become its integral part, so
their semantics is embodied in the measure. Additionally, such components can have only one
value per dataset, so they give no distinguishing power to data mining.

6 Conclusion
We created data pre-processing pipeline fragments that automate several common tasks of
optimisation, enrichment, and preparation for analysis. Reusability of the fragments is based
on shared data model of DCV and the OpenBudgets.eu data model they operate on. The DCV
basis of the OpenBudgets.eu data model allowed us to leverage standard operations specified
for DCV data, such as normalization or validation of integrity constraints. We demonstrated the
benefit of data enrichment on the conversion nominal monetary values to real values using
exchange rates and price indices, which is a common task preceding comparative analyses.
We aimed for maximum reuse also in the case of preparation for data analysis, for which we
created a pipeline fragment that transforms RDF DCV data into CSV, a typical format used by
data mining tools.

The developed pipeline fragments will be used in the following data analyses in
OpenBudgets.eu. They are available from the repository at
https://github.com/openbudgets/pipeline-fragments. Wider application of the fragments will
provide feedback on how to improve their usability and robustness. Data pre-processing work
will continue with development of additional pipeline fragments as required by the
OpenBudgets.eu use cases.

7 References
● Dudáš, M.; Horáková, L.; Klímek J., Kučera J., Mynarz J., Sedmihradská L., Zbranek

J. (2015): OpenBudgets.eu - Deliverable D1.4 - User documentation, 2015,

http://openbudgets.eu/assets/deliverables/D1.4.pdf.

33 https://github.com/openbudgets/pipeline-fragments/tree/master/dcv/dcv-to-csv

https://github.com/openbudgets/pipeline-fragments
http://openbudgets.eu/assets/deliverables/D1.4.pdf
https://github.com/openbudgets/pipeline-fragments/tree/master/dcv/dcv-to-csv

 D2.2 – v.1.0

Page 17

● Engels, C.; Musyaffa, F; Dong, T.; Klímek, J.; Mynarz, J.; Orlandi, F.; Auer, S. (2016):

Deliverable 2.1 - Tools for semantic lifting of multiformat budgetary data.

http://openbudgets.eu/assets/deliverables/D2.1.pdf

● European Union (2013): European System of Accounts 2010.

http://ec.europa.eu/eurostat/documents/3859598/5925693/KS-02-13-269-

EN.PDF/44cd9d01-bc64-40e5-bd40-d17df0c69334. ISBN 978-92-79-31242-7. DOI

10.2785/16644.

● Hausenblas, M., Villazón-Terrazas, B., Cyganiak, R. (2012): Data Shapes and Data

Transformations. CoRR. http://arxiv.org/abs/1211.1565.

● Ioannidis, L.; Klímek. J.; Musyaffa, F.; Mynarz, J.; Sedmihradská, L.; Zbranek, J.

(2016): OpenBudgets.eu - Deliverable D1.9 - Linking code lists to external datasets.

http://openbudgets.eu/assets/deliverables/D1.9.pdf

● Lachiche, N. (2013): Propositionalization. Encyclopedia of Machine Learning.

Springer. http://link.springer.com/referenceworkentry/10.1007%2F978-0-387-30164-

8_680.

● Lohr, S. (2014): For Big-Data Scientists, ‘Janitor Work’ Is Key Hurdle to Insights. New

York Times. http://www.nytimes.com/2014/08/18/technology/for-big-data-scientists-

hurdle-to-insights-is-janitor-work.html

http://openbudgets.eu/assets/deliverables/D2.1.pdf
http://ec.europa.eu/eurostat/documents/3859598/5925693/KS-02-13-269-EN.PDF/44cd9d01-bc64-40e5-bd40-d17df0c69334
http://ec.europa.eu/eurostat/documents/3859598/5925693/KS-02-13-269-EN.PDF/44cd9d01-bc64-40e5-bd40-d17df0c69334
http://arxiv.org/abs/1211.1565
http://openbudgets.eu/assets/deliverables/D1.9.pdf
http://link.springer.com/referenceworkentry/10.1007%2F978-0-387-30164-8_680
http://link.springer.com/referenceworkentry/10.1007%2F978-0-387-30164-8_680
http://www.nytimes.com/2014/08/18/technology/for-big-data-scientists-hurdle-to-insights-is-janitor-work.html
http://www.nytimes.com/2014/08/18/technology/for-big-data-scientists-hurdle-to-insights-is-janitor-work.html

